Properties

Label 2.2.21.1-192.1-e6
Base field \(\Q(\sqrt{21}) \)
Conductor \((-8a+16)\)
Conductor norm \( 192 \)
CM no
Base change yes: 1176.i1,72.a1
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([-5, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-a{x}^{2}+\left(1922a-5379\right){x}-68449a+191102\)
sage: E = EllipticCurve([K([0,0]),K([0,-1]),K([0,0]),K([-5379,1922]),K([191102,-68449])])
 
gp: E = ellinit([Pol(Vecrev([0,0])),Pol(Vecrev([0,-1])),Pol(Vecrev([0,0])),Pol(Vecrev([-5379,1922])),Pol(Vecrev([191102,-68449]))], K);
 
magma: E := EllipticCurve([K![0,0],K![0,-1],K![0,0],K![-5379,1922],K![191102,-68449]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-8a+16)\) = \((-a+2)\cdot(2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 192 \) = \(3\cdot4^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((18432)\) = \((-a+2)^{4}\cdot(2)^{11}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 339738624 \) = \(3^{4}\cdot4^{11}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3065617154}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-11 a + 34 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 11.3670170350032 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.48048647565498 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((2)\) \(4\) \(1\) \(II^{*}\) Additive \(-1\) \(3\) \(11\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 192.1-e consists of curves linked by isogenies of degrees dividing 8.

Base change

This curve is the base change of 1176.i1, 72.a1, defined over \(\Q\), so it is also a \(\Q\)-curve.