Properties

Label 2.2.21.1-192.1-f1
Base field \(\Q(\sqrt{21}) \)
Conductor norm \( 192 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
 
gp: K = nfinit(Polrev([-5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-a{x}^{2}+\left(20a-44\right){x}+76a-192\)
sage: E = EllipticCurve([K([0,0]),K([0,-1]),K([0,0]),K([-44,20]),K([-192,76])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,-1]),Polrev([0,0]),Polrev([-44,20]),Polrev([-192,76])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,-1],K![0,0],K![-44,20],K![-192,76]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-8a+16)\) = \((-a+2)\cdot(2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 192 \) = \(3\cdot4^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1024a-1024)\) = \((-a+2)\cdot(2)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -3145728 \) = \(-3\cdot4^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{5202690124}{3} a + \frac{14522206328}{3} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-3 a + \frac{28}{3} : -\frac{100}{9} a + \frac{230}{9} : 1\right)$
Height \(3.4110501262443714637438004156732651869\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a - 4 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.4110501262443714637438004156732651869 \)
Period: \( 3.4104241158480564133204224946942157338 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.5385565640989296085888570180187740303 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((2)\) \(4\) \(2\) \(III^{*}\) Additive \(1\) \(3\) \(10\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 192.1-f consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.