Properties

Label 2.2.120.1-24.1-c6
Base field \(\Q(\sqrt{30}) \)
Conductor norm \( 24 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{30}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 30 \); class number \(2\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-30, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([-30, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-30, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(4222a-23122\right){x}-330496a+1810202\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,1]),K([1,-1]),K([0,0]),K([-23122,4222]),K([1810202,-330496])])
 
Copy content gp:E = ellinit([Polrev([0,1]),Polrev([1,-1]),Polrev([0,0]),Polrev([-23122,4222]),Polrev([1810202,-330496])], K);
 
Copy content magma:E := EllipticCurve([K![0,1],K![1,-1],K![0,0],K![-23122,4222],K![1810202,-330496]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-11 a + 59 : -29 a + 162 : 1\right)$$0.53427086088645772944791084742416817344$$\infty$
$\left(-11 a + \frac{119}{2} : -\frac{119}{4} a + 165 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-2a-12)\) = \((2,a)^{3}\cdot(3,a)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 24 \) = \(2^{3}\cdot3\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $288$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((288)\) = \((2,a)^{10}\cdot(3,a)^{4}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 82944 \) = \(2^{10}\cdot3^{4}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{3065617154}{9} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.53427086088645772944791084742416817344 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 1.06854172177291545889582169484833634688 \)
Global period: $\Omega(E/K)$ \( 22.734034070006347604148590511773734759 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 8 \)  =  \(2\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 4.4351403050949894729315324693857331733 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}4.435140305 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 22.734034 \cdot 1.068542 \cdot 8 } { {2^2 \cdot 10.954451} } \\ & \approx 4.435140305 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(2\) \(III^{*}\) Additive \(1\) \(3\) \(10\) \(0\)
\((3,a)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 24.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 72.a1
\(\Q\) 4800.cc1