Learn more

Refine search


Results (1-50 of 140 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
9.1-a1 9.1-a \(\Q(\sqrt{30}) \) \( 3^{2} \) $1$ $\Z/2\Z$ $-8$ $0.298766578$ $20.72266188$ 2.260720761 \( 8000 \) \( \bigl[a\) , \( a\) , \( a + 1\) , \( 7 a\) , \( 13 a - 1\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+7a{x}+13a-1$
9.1-a2 9.1-a \(\Q(\sqrt{30}) \) \( 3^{2} \) $1$ $\Z/2\Z$ $-8$ $0.597533156$ $41.44532377$ 2.260720761 \( 8000 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 10 a - 45\) , \( -53 a + 296\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(10a-45\right){x}-53a+296$
9.1-b1 9.1-b \(\Q(\sqrt{30}) \) \( 3^{2} \) $1$ $\Z/2\Z$ $-8$ $0.298766578$ $20.72266188$ 2.260720761 \( 8000 \) \( \bigl[a\) , \( -a\) , \( a + 1\) , \( -8 a\) , \( -14 a - 1\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}-8a{x}-14a-1$
9.1-b2 9.1-b \(\Q(\sqrt{30}) \) \( 3^{2} \) $1$ $\Z/2\Z$ $-8$ $0.597533156$ $41.44532377$ 2.260720761 \( 8000 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -10 a - 45\) , \( 53 a + 296\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-10a-45\right){x}+53a+296$
15.1-a1 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/4\Z$ $1$ $0.490422220$ 2.865230004 \( -\frac{147281603041}{215233605} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -4844 a - 26493\) , \( -813715 a - 4456859\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-4844a-26493\right){x}-813715a-4456859$
15.1-a2 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $31.38702211$ 2.865230004 \( -\frac{1}{15} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -4 a + 17\) , \( 175 a + 1001\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-4a+17\right){x}+175a+1001$
15.1-a3 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $1.961688882$ 2.865230004 \( \frac{4733169839}{3515625} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( 1536 a + 8452\) , \( -38388 a - 210217\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(1536a+8452\right){x}-38388a-210217$
15.1-a4 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $7.846755528$ 2.865230004 \( \frac{111284641}{50625} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -444 a - 2393\) , \( -6195 a - 33889\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-444a-2393\right){x}-6195a-33889$
15.1-a5 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $31.38702211$ 2.865230004 \( \frac{13997521}{225} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -224 a - 1188\) , \( 3752 a + 20593\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-224a-1188\right){x}+3752a+20593$
15.1-a6 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.961688882$ 2.865230004 \( \frac{272223782641}{164025} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -5944 a - 32518\) , \( -592970 a - 3247789\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-5944a-32518\right){x}-592970a-3247789$
15.1-a7 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $31.38702211$ 2.865230004 \( \frac{56667352321}{15} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -3524 a - 19263\) , \( 260267 a + 1425583\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-3524a-19263\right){x}+260267a+1425583$
15.1-a8 15.1-a \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $0.490422220$ 2.865230004 \( \frac{1114544804970241}{405} \) \( \bigl[a + 1\) , \( -a\) , \( 1\) , \( -95044 a - 520543\) , \( -37484825 a - 205312819\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(-95044a-520543\right){x}-37484825a-205312819$
15.1-b1 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $2.547989231$ 0.930394118 \( -\frac{147281603041}{215233605} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 9333283 a - 51120511\) , \( -68163727122 a + 373348109476\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(9333283a-51120511\right){x}-68163727122a+373348109476$
15.1-b2 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/4\Z$ $1$ $10.19195692$ 0.930394118 \( -\frac{1}{15} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 1763 a - 9671\) , \( 15245718 a - 83504244\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(1763a-9671\right){x}+15245718a-83504244$
15.1-b3 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $2.547989231$ 0.930394118 \( \frac{4733169839}{3515625} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -2967357 a + 16252869\) , \( -3478975110 a + 19055131440\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-2967357a+16252869\right){x}-3478975110a+19055131440$
15.1-b4 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $10.19195692$ 0.930394118 \( \frac{111284641}{50625} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 850083 a - 4656111\) , \( -458404002 a + 2510782116\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(850083a-4656111\right){x}-458404002a+2510782116$
15.1-b5 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $10.19195692$ 0.930394118 \( \frac{13997521}{225} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 425923 a - 2332891\) , \( 350864730 a - 1921765280\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(425923a-2332891\right){x}+350864730a-1921765280$
15.1-b6 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $10.19195692$ 0.930394118 \( \frac{272223782641}{164025} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 11454083 a - 62736611\) , \( -49312315902 a + 270094677816\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(11454083a-62736611\right){x}-49312315902a+270094677816$
15.1-b7 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $2.547989231$ 0.930394118 \( \frac{56667352321}{15} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 6788323 a - 37181191\) , \( 22558466070 a - 123557807300\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(6788323a-37181191\right){x}+22558466070a-123557807300$
15.1-b8 15.1-b \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $0$ $\Z/2\Z$ $1$ $10.19195692$ 0.930394118 \( \frac{1114544804970241}{405} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 183238883 a - 1003640711\) , \( -3159143370282 a + 17303340862956\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(183238883a-1003640711\right){x}-3159143370282a+17303340862956$
15.1-c1 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z$ $0.537222968$ $2.547989231$ 3.998632720 \( -\frac{147281603041}{215233605} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 19358 a - 106026\) , \( -6354792 a + 34806630\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(19358a-106026\right){x}-6354792a+34806630$
15.1-c2 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z$ $2.148891872$ $10.19195692$ 3.998632720 \( -\frac{1}{15} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -2 a + 14\) , \( 1448 a - 7930\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-2a+14\right){x}+1448a-7930$
15.1-c3 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z$ $4.297783744$ $2.547989231$ 3.998632720 \( \frac{4733169839}{3515625} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -6162 a + 33754\) , \( -356336 a + 1951734\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-6162a+33754\right){x}-356336a+1951734$
15.1-c4 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.148891872$ $10.19195692$ 3.998632720 \( \frac{111284641}{50625} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 1758 a - 9626\) , \( -35432 a + 194070\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(1758a-9626\right){x}-35432a+194070$
15.1-c5 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.297783744$ $10.19195692$ 3.998632720 \( \frac{13997521}{225} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 878 a - 4806\) , \( 37104 a - 203226\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(878a-4806\right){x}+37104a-203226$
15.1-c6 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.074445936$ $10.19195692$ 3.998632720 \( \frac{272223782641}{164025} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 23758 a - 130126\) , \( -4553632 a + 24941270\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(23758a-130126\right){x}-4553632a+24941270$
15.1-c7 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z$ $8.595567489$ $2.547989231$ 3.998632720 \( \frac{56667352321}{15} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 14078 a - 77106\) , \( 2194824 a - 12021546\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(14078a-77106\right){x}+2194824a-12021546$
15.1-c8 15.1-c \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z$ $0.537222968$ $10.19195692$ 3.998632720 \( \frac{1114544804970241}{405} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( 380158 a - 2082226\) , \( -296837272 a + 1625844710\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(380158a-2082226\right){x}-296837272a+1625844710$
15.1-d1 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z$ $5.036899059$ $0.490422220$ 1.803984289 \( -\frac{147281603041}{215233605} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -110\) , \( -880\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-110{x}-880$
15.1-d2 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/4\Z$ $1.259224764$ $31.38702211$ 1.803984289 \( -\frac{1}{15} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}$
15.1-d3 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/8\Z$ $10.07379811$ $1.961688882$ 1.803984289 \( \frac{4733169839}{3515625} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 35\) , \( -28\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}+35{x}-28$
15.1-d4 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $5.036899059$ $7.846755528$ 1.803984289 \( \frac{111284641}{50625} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -10\) , \( -10\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-10{x}-10$
15.1-d5 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $2.518449529$ $31.38702211$ 1.803984289 \( \frac{13997521}{225} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -5\) , \( 2\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-5{x}+2$
15.1-d6 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.518449529$ $1.961688882$ 1.803984289 \( \frac{272223782641}{164025} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -135\) , \( -660\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-135{x}-660$
15.1-d7 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/4\Z$ $1.259224764$ $31.38702211$ 1.803984289 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -80\) , \( 242\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-80{x}+242$
15.1-d8 15.1-d \(\Q(\sqrt{30}) \) \( 3 \cdot 5 \) $1$ $\Z/2\Z$ $5.036899059$ $0.490422220$ 1.803984289 \( \frac{1114544804970241}{405} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -2160\) , \( -39540\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+{x}^{2}-2160{x}-39540$
20.1-a1 20.1-a \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $10.34365470$ 3.776968672 \( -\frac{20720464}{15625} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( 404 a - 2180\) , \( -15305 a + 83885\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(404a-2180\right){x}-15305a+83885$
20.1-a2 20.1-a \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $10.34365470$ 3.776968672 \( \frac{21296}{25} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -36 a + 230\) , \( 323 a - 1713\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-36a+230\right){x}+323a-1713$
20.1-a3 20.1-a \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/2\Z$ $1$ $20.68730941$ 3.776968672 \( \frac{16384}{5} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 234 a - 1275\) , \( 2643 a - 14473\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(234a-1275\right){x}+2643a-14473$
20.1-a4 20.1-a \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $0$ $\Z/6\Z$ $1$ $20.68730941$ 3.776968672 \( \frac{488095744}{125} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 7274 a - 39835\) , \( -805965 a + 4414455\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(7274a-39835\right){x}-805965a+4414455$
20.1-b1 20.1-b \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $3.718194980$ $1.772687765$ 2.406765491 \( -\frac{20720464}{15625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -36\) , \( -140\bigr] \) ${y}^2={x}^{3}+{x}^{2}-36{x}-140$
20.1-b2 20.1-b \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/6\Z$ $1.239398326$ $15.95418988$ 2.406765491 \( \frac{21296}{25} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4\) , \( 4\bigr] \) ${y}^2={x}^{3}+{x}^{2}+4{x}+4$
20.1-b3 20.1-b \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/6\Z$ $2.478796653$ $31.90837977$ 2.406765491 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^{3}+{x}^{2}-{x}$
20.1-b4 20.1-b \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $7.436389961$ $3.545375530$ 2.406765491 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^{3}+{x}^{2}-41{x}-116$
20.1-c1 20.1-c \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $1.957359950$ $1.772687765$ 3.800962354 \( -\frac{20720464}{15625} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -1598 a - 8746\) , \( -120126 a - 657954\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1598a-8746\right){x}-120126a-657954$
20.1-c2 20.1-c \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $0.652453316$ $15.95418988$ 3.800962354 \( \frac{21296}{25} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 162 a + 894\) , \( 2298 a + 12590\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(162a+894\right){x}+2298a+12590$
20.1-c3 20.1-c \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $1.304906633$ $31.90837977$ 3.800962354 \( \frac{16384}{5} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -58 a - 311\) , \( 519 a + 2846\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-58a-311\right){x}+519a+2846$
20.1-c4 20.1-c \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $1$ $\Z/2\Z$ $3.914719901$ $3.545375530$ 3.800962354 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -1818 a - 9951\) , \( -94857 a - 519550\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1818a-9951\right){x}-94857a-519550$
20.1-d1 20.1-d \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $2$ $\Z/2\Z$ $0.269743827$ $10.34365470$ 3.056441960 \( -\frac{20720464}{15625} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 15\) , \( 13\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+15{x}+13$
20.1-d2 20.1-d \(\Q(\sqrt{30}) \) \( 2^{2} \cdot 5 \) $2$ $\Z/2\Z$ $0.269743827$ $10.34365470$ 3.056441960 \( \frac{21296}{25} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( 25\) , \( 25\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+25{x}+25$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.