Properties

Label 2.2.120.1-24.1-c4
Base field \(\Q(\sqrt{30}) \)
Conductor norm \( 24 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{30}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 30 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-30, 0, 1]))
 
gp: K = nfinit(Polrev([-30, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-30, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(262a-1432\right){x}-4084a+22370\)
sage: E = EllipticCurve([K([0,1]),K([1,-1]),K([0,0]),K([-1432,262]),K([22370,-4084])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,-1]),Polrev([0,0]),Polrev([-1432,262]),Polrev([22370,-4084])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,-1],K![0,0],K![-1432,262],K![22370,-4084]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a-12)\) = \((2,a)^{3}\cdot(3,a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 24 \) = \(2^{3}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1296)\) = \((2,a)^{8}\cdot(3,a)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1679616 \) = \(2^{8}\cdot3^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1556068}{81} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(3 a - \frac{35}{2} : -\frac{91}{4} a + \frac{255}{2} : 1\right)$
Height \(1.0685417217729154588958216948483363469\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(6 a - 34 : 17 a - 90 : 1\right)$ $\left(-2 a + 10 : -5 a + 30 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.0685417217729154588958216948483363469 \)
Period: \( 22.734034070006347604148590511773734758 \)
Tamagawa product: \( 16 \)  =  \(2\cdot2^{3}\)
Torsion order: \(4\)
Leading coefficient: \( 4.4351403050949894729315324693857331733 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(2\) \(I_{1}^{*}\) Additive \(1\) \(3\) \(8\) \(0\)
\((3,a)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 24.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 72.a3
\(\Q\) 4800.cc3