Base field \(\Q(\sqrt{26}) \)
Generator \(a\), with minimal polynomial \( x^{2} - 26 \); class number \(2\).
Weierstrass equation
This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $\frak{N}$ | = | \((50,a+26)\) | = | \((2,a)\cdot(5,a+1)^{2}\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 50 \) | = | \(2\cdot5^{2}\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-4096a-55296$ | ||
| Discriminant ideal: | $(\Delta)$ | = | \((-4096a-55296)\) | = | \((2,a)^{22}\cdot(5,a+1)^{4}\) |
|
| |||||
| Discriminant norm: | $N(\Delta)$ | = | \( 2621440000 \) | = | \(2^{22}\cdot5^{4}\) |
|
| |||||
| Minimal discriminant: | $\frak{D}_{\mathrm{min}}$ | = | \((64a+864)\) | = | \((2,a)^{10}\cdot(5,a+1)^{4}\) |
| Minimal discriminant norm: | $N(\frak{D}_{\mathrm{min}})$ | = | \( 640000 \) | = | \(2^{10}\cdot5^{4}\) |
| j-invariant: | $j$ | = | \( \frac{111124542183}{16} a - \frac{1133252415859}{32} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(0\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 1.6749783773996772905676251917034625458 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 30 \) = \(( 2 \cdot 5 )\cdot3\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(1\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 4.9273542872347698907241019321027937509 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}4.927354287 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 1.674978 \cdot 1 \cdot 30 } { {1^2 \cdot 10.198039} } \\ & \approx 4.927354287 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((2,a)\) | \(2\) | \(10\) | \(I_{10}\) | Split multiplicative | \(-1\) | \(1\) | \(10\) | \(10\) |
| \((5,a+1)\) | \(5\) | \(3\) | \(IV\) | Additive | \(-1\) | \(2\) | \(4\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(5\) | 5B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
5.
Its isogeny class
50.3-i
consists of curves linked by isogenies of
degree 5.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.