| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 50.3-a1 |
50.3-a |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{5} \cdot 5^{9} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \) |
$2.016695418$ |
$2.743977986$ |
2.170522321 |
\( -\frac{194613}{8} a - \frac{490007}{4} \) |
\( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -23 a + 127\) , \( -83 a + 442\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-23a+127\right){x}-83a+442$ |
| 50.3-a2 |
50.3-a |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{13} \cdot 5^{9} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \) |
$0.403339083$ |
$13.71988993$ |
2.170522321 |
\( \frac{5631243}{2} a - 14356163 \) |
\( \bigl[a\) , \( -1\) , \( 0\) , \( 35297 a - 179970\) , \( -8086576 a + 41233615\bigr] \) |
${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(35297a-179970\right){x}-8086576a+41233615$ |
| 50.3-b1 |
50.3-b |
$2$ |
$17$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2 \cdot 5^{9} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$17$ |
17B.2.1 |
$4$ |
\( 2 \) |
$1$ |
$2.759505239$ |
2.164734009 |
\( \frac{208696255}{2} a - 531584012 \) |
\( \bigl[1\) , \( 0\) , \( a\) , \( -189 a - 964\) , \( 3167 a + 16140\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-189a-964\right){x}+3167a+16140$ |
| 50.3-b2 |
50.3-b |
$2$ |
$17$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{17} \cdot 5^{9} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$17$ |
17B.2.3 |
$4$ |
\( 2 \cdot 17 \) |
$1$ |
$0.162323837$ |
2.164734009 |
\( \frac{895930235373410550627295}{512} a + \frac{571045719123349636251427}{64} \) |
\( \bigl[1\) , \( 0\) , \( a\) , \( -834294 a - 4254194\) , \( -936754568 a - 4776529220\bigr] \) |
${y}^2+{x}{y}+a{y}={x}^{3}+\left(-834294a-4254194\right){x}-936754568a-4776529220$ |
| 50.3-c1 |
50.3-c |
$1$ |
$1$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{3} \cdot 5^{15} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3Ns |
$1$ |
\( 2 \) |
$1$ |
$7.188791123$ |
1.409837931 |
\( \frac{176424402637}{7812500} a + \frac{224871461647}{1953125} \) |
\( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 75 a - 378\) , \( -9062 a + 46206\bigr] \) |
${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(75a-378\right){x}-9062a+46206$ |
| 50.3-d1 |
50.3-d |
$1$ |
$1$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{23} \cdot 5^{7} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$1$ |
$5.991451434$ |
1.175020299 |
\( \frac{416163907}{20480} a - \frac{1060470591}{10240} \) |
\( \bigl[1\) , \( 0\) , \( a + 1\) , \( 6382 a + 32544\) , \( 3521823 a + 17957840\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(6382a+32544\right){x}+3521823a+17957840$ |
| 50.3-e1 |
50.3-e |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{42} \cdot 5^{6} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$3, 5$ |
3Ns, 5B |
$1$ |
\( 2 \cdot 3 \cdot 5 \) |
$1.660327293$ |
$0.510834442$ |
4.990090933 |
\( -\frac{1680914269}{32768} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( -61039 a - 311215\) , \( -18852164 a - 96127516\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-61039a-311215\right){x}-18852164a-96127516$ |
| 50.3-e2 |
50.3-e |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{18} \cdot 5^{6} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$3, 5$ |
3Ns, 5B |
$1$ |
\( 2 \cdot 3 \) |
$0.332065458$ |
$12.77086107$ |
4.990090933 |
\( \frac{1331}{8} \) |
\( \bigl[a\) , \( -a - 1\) , \( a\) , \( 561 a + 2885\) , \( 50600 a + 258048\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(561a+2885\right){x}+50600a+258048$ |
| 50.3-f1 |
50.3-f |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{14} \cdot 5^{8} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \cdot 3 \) |
$0.098495863$ |
$22.13612461$ |
2.565571704 |
\( -\frac{88209}{2} a + \frac{444501}{2} \) |
\( \bigl[a\) , \( 1\) , \( 0\) , \( -1633 a - 8308\) , \( 100258 a + 511233\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-1633a-8308\right){x}+100258a+511233$ |
| 50.3-f2 |
50.3-f |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{10} \cdot 5^{4} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \cdot 3 \) |
$0.492479315$ |
$4.427224922$ |
2.565571704 |
\( -\frac{12204189}{32} a + \frac{62228061}{32} \) |
\( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -7886 a - 40219\) , \( -5646511 a - 28791674\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-7886a-40219\right){x}-5646511a-28791674$ |
| 50.3-g1 |
50.3-g |
$1$ |
$1$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{16} \cdot 5^{2} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2 \) |
$1$ |
$10.35008641$ |
2.029818946 |
\( -\frac{381845}{4} a - \frac{1902655}{4} \) |
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( -1110 a - 5658\) , \( -50480 a - 257398\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1110a-5658\right){x}-50480a-257398$ |
| 50.3-h1 |
50.3-h |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{14} \cdot 5^{8} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \) |
$0.702356892$ |
$8.374891886$ |
2.307174164 |
\( -2160194037 a - \frac{22029743059}{2} \) |
\( \bigl[a\) , \( a - 1\) , \( 0\) , \( -66 a - 328\) , \( 472 a + 2316\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-66a-328\right){x}+472a+2316$ |
| 50.3-h2 |
50.3-h |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{10} \cdot 5^{4} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \) |
$3.511784464$ |
$1.674978377$ |
2.307174164 |
\( \frac{111124542183}{16} a - \frac{1133252415859}{32} \) |
\( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 45 a + 237\) , \( 1808 a + 9221\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(45a+237\right){x}+1808a+9221$ |
| 50.3-i1 |
50.3-i |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{2} \cdot 5^{8} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$8.374891886$ |
4.927354287 |
\( -2160194037 a - \frac{22029743059}{2} \) |
\( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -16 a - 74\) , \( 43 a + 211\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(-16a-74\right){x}+43a+211$ |
| 50.3-i2 |
50.3-i |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{22} \cdot 5^{4} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \cdot 3 \cdot 5 \) |
$1$ |
$1.674978377$ |
4.927354287 |
\( \frac{111124542183}{16} a - \frac{1133252415859}{32} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( 174 a + 869\) , \( 13933 a + 71030\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(174a+869\right){x}+13933a+71030$ |
| 50.3-j1 |
50.3-j |
$1$ |
$1$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{4} \cdot 5^{2} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \) |
$0.705097487$ |
$10.35008641$ |
5.724880954 |
\( -\frac{381845}{4} a - \frac{1902655}{4} \) |
\( \bigl[1\) , \( 1\) , \( a + 1\) , \( 2 a - 13\) , \( -4 a + 11\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(2a-13\right){x}-4a+11$ |
| 50.3-k1 |
50.3-k |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{2} \cdot 5^{8} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \) |
$1$ |
$22.13612461$ |
4.341251205 |
\( -\frac{88209}{2} a + \frac{444501}{2} \) |
\( \bigl[1\) , \( -1\) , \( 1\) , \( 13 a - 67\) , \( -61 a + 311\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(13a-67\right){x}-61a+311$ |
| 50.3-k2 |
50.3-k |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{22} \cdot 5^{4} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$4.427224922$ |
4.341251205 |
\( -\frac{12204189}{32} a + \frac{62228061}{32} \) |
\( \bigl[a\) , \( 1\) , \( a\) , \( -2 a - 15\) , \( -46 a - 265\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-2a-15\right){x}-46a-265$ |
| 50.3-l1 |
50.3-l |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{30} \cdot 5^{6} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$3, 5$ |
3Ns, 5B |
$25$ |
\( 2 \) |
$1$ |
$0.510834442$ |
2.504571916 |
\( -\frac{1680914269}{32768} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( a\) , \( 96 a - 511\) , \( 1597 a - 8193\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(96a-511\right){x}+1597a-8193$ |
| 50.3-l2 |
50.3-l |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{6} \cdot 5^{6} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$3, 5$ |
3Ns, 5B |
$1$ |
\( 2 \) |
$1$ |
$12.77086107$ |
2.504571916 |
\( \frac{1331}{8} \) |
\( \bigl[a + 1\) , \( -a + 1\) , \( a\) , \( -4 a + 14\) , \( -10 a + 50\bigr] \) |
${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+14\right){x}-10a+50$ |
| 50.3-m1 |
50.3-m |
$1$ |
$1$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{35} \cdot 5^{7} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{2} \cdot 23 \) |
$0.051417767$ |
$5.991451434$ |
5.558356732 |
\( \frac{416163907}{20480} a - \frac{1060470591}{10240} \) |
\( \bigl[a\) , \( a + 1\) , \( 0\) , \( 60 a - 228\) , \( -384 a + 2408\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(60a-228\right){x}-384a+2408$ |
| 50.3-n1 |
50.3-n |
$1$ |
$1$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{15} \cdot 5^{15} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3$ |
3Ns |
$1$ |
\( 2^{2} \cdot 3 \) |
$0.309180125$ |
$7.188791123$ |
5.230726417 |
\( \frac{176424402637}{7812500} a + \frac{224871461647}{1953125} \) |
\( \bigl[a\) , \( a\) , \( a\) , \( -2084 a - 10639\) , \( 108795 a + 554742\bigr] \) |
${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-2084a-10639\right){x}+108795a+554742$ |
| 50.3-o1 |
50.3-o |
$2$ |
$17$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{13} \cdot 5^{9} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$17$ |
17B.2.1 |
$1$ |
\( 2 \) |
$3.091227696$ |
$2.759505239$ |
3.345842863 |
\( \frac{208696255}{2} a - 531584012 \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( -754 a - 3842\) , \( 23828 a + 121470\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-754a-3842\right){x}+23828a+121470$ |
| 50.3-o2 |
50.3-o |
$2$ |
$17$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( - 2^{29} \cdot 5^{9} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$17$ |
17B.2.3 |
$1$ |
\( 2 \) |
$52.55087084$ |
$0.162323837$ |
3.345842863 |
\( \frac{895930235373410550627295}{512} a + \frac{571045719123349636251427}{64} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( -3337174 a - 17016762\) , \( -7500710892 a - 38246267250\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-3337174a-17016762\right){x}-7500710892a-38246267250$ |
| 50.3-p1 |
50.3-p |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2^{17} \cdot 5^{9} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \cdot 5 \) |
$1$ |
$2.743977986$ |
2.690691788 |
\( -\frac{194613}{8} a - \frac{490007}{4} \) |
\( \bigl[a\) , \( 0\) , \( 0\) , \( -2062 a - 10500\) , \( -119960 a - 611668\bigr] \) |
${y}^2+a{x}{y}={x}^{3}+\left(-2062a-10500\right){x}-119960a-611668$ |
| 50.3-p2 |
50.3-p |
$2$ |
$5$ |
\(\Q(\sqrt{26}) \) |
$2$ |
$[2, 0]$ |
50.3 |
\( 2 \cdot 5^{2} \) |
\( 2 \cdot 5^{9} \) |
$2.42325$ |
$(2,a), (5,a+1)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B |
$1$ |
\( 2 \) |
$1$ |
$13.71988993$ |
2.690691788 |
\( \frac{5631243}{2} a - 14356163 \) |
\( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 3 a + 15\) , \( -a - 9\bigr] \) |
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(3a+15\right){x}-a-9$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.