Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 5000 over real quadratic fields with discriminant 497

Refine search


Results (26 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
50.3-a1 50.3-a \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $2.016695418$ $2.743977986$ 2.170522321 \( -\frac{194613}{8} a - \frac{490007}{4} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -23 a + 127\) , \( -83 a + 442\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-23a+127\right){x}-83a+442$
50.3-a2 50.3-a \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.403339083$ $13.71988993$ 2.170522321 \( \frac{5631243}{2} a - 14356163 \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 35297 a - 179970\) , \( -8086576 a + 41233615\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(35297a-179970\right){x}-8086576a+41233615$
50.3-b1 50.3-b \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.759505239$ 2.164734009 \( \frac{208696255}{2} a - 531584012 \) \( \bigl[1\) , \( 0\) , \( a\) , \( -189 a - 964\) , \( 3167 a + 16140\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-189a-964\right){x}+3167a+16140$
50.3-b2 50.3-b \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.162323837$ 2.164734009 \( \frac{895930235373410550627295}{512} a + \frac{571045719123349636251427}{64} \) \( \bigl[1\) , \( 0\) , \( a\) , \( -834294 a - 4254194\) , \( -936754568 a - 4776529220\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-834294a-4254194\right){x}-936754568a-4776529220$
50.3-c1 50.3-c \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.188791123$ 1.409837931 \( \frac{176424402637}{7812500} a + \frac{224871461647}{1953125} \) \( \bigl[1\) , \( -a + 1\) , \( 0\) , \( 75 a - 378\) , \( -9062 a + 46206\bigr] \) ${y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(75a-378\right){x}-9062a+46206$
50.3-d1 50.3-d \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $5.991451434$ 1.175020299 \( \frac{416163907}{20480} a - \frac{1060470591}{10240} \) \( \bigl[1\) , \( 0\) , \( a + 1\) , \( 6382 a + 32544\) , \( 3521823 a + 17957840\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(6382a+32544\right){x}+3521823a+17957840$
50.3-e1 50.3-e \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.660327293$ $0.510834442$ 4.990090933 \( -\frac{1680914269}{32768} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -61039 a - 311215\) , \( -18852164 a - 96127516\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-61039a-311215\right){x}-18852164a-96127516$
50.3-e2 50.3-e \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.332065458$ $12.77086107$ 4.990090933 \( \frac{1331}{8} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 561 a + 2885\) , \( 50600 a + 258048\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(561a+2885\right){x}+50600a+258048$
50.3-f1 50.3-f \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.098495863$ $22.13612461$ 2.565571704 \( -\frac{88209}{2} a + \frac{444501}{2} \) \( \bigl[a\) , \( 1\) , \( 0\) , \( -1633 a - 8308\) , \( 100258 a + 511233\bigr] \) ${y}^2+a{x}{y}={x}^{3}+{x}^{2}+\left(-1633a-8308\right){x}+100258a+511233$
50.3-f2 50.3-f \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.492479315$ $4.427224922$ 2.565571704 \( -\frac{12204189}{32} a + \frac{62228061}{32} \) \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -7886 a - 40219\) , \( -5646511 a - 28791674\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+a{x}^{2}+\left(-7886a-40219\right){x}-5646511a-28791674$
50.3-g1 50.3-g \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $10.35008641$ 2.029818946 \( -\frac{381845}{4} a - \frac{1902655}{4} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( -1110 a - 5658\) , \( -50480 a - 257398\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-1110a-5658\right){x}-50480a-257398$
50.3-h1 50.3-h \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.702356892$ $8.374891886$ 2.307174164 \( -2160194037 a - \frac{22029743059}{2} \) \( \bigl[a\) , \( a - 1\) , \( 0\) , \( -66 a - 328\) , \( 472 a + 2316\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-66a-328\right){x}+472a+2316$
50.3-h2 50.3-h \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $3.511784464$ $1.674978377$ 2.307174164 \( \frac{111124542183}{16} a - \frac{1133252415859}{32} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 45 a + 237\) , \( 1808 a + 9221\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(45a+237\right){x}+1808a+9221$
50.3-i1 50.3-i \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $8.374891886$ 4.927354287 \( -2160194037 a - \frac{22029743059}{2} \) \( \bigl[a + 1\) , \( -1\) , \( 1\) , \( -16 a - 74\) , \( 43 a + 211\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-{x}^{2}+\left(-16a-74\right){x}+43a+211$
50.3-i2 50.3-i \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.674978377$ 4.927354287 \( \frac{111124542183}{16} a - \frac{1133252415859}{32} \) \( \bigl[a\) , \( a\) , \( a\) , \( 174 a + 869\) , \( 13933 a + 71030\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(174a+869\right){x}+13933a+71030$
50.3-j1 50.3-j \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.705097487$ $10.35008641$ 5.724880954 \( -\frac{381845}{4} a - \frac{1902655}{4} \) \( \bigl[1\) , \( 1\) , \( a + 1\) , \( 2 a - 13\) , \( -4 a + 11\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(2a-13\right){x}-4a+11$
50.3-k1 50.3-k \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $22.13612461$ 4.341251205 \( -\frac{88209}{2} a + \frac{444501}{2} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 13 a - 67\) , \( -61 a + 311\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(13a-67\right){x}-61a+311$
50.3-k2 50.3-k \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $4.427224922$ 4.341251205 \( -\frac{12204189}{32} a + \frac{62228061}{32} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -2 a - 15\) , \( -46 a - 265\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-2a-15\right){x}-46a-265$
50.3-l1 50.3-l \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $0.510834442$ 2.504571916 \( -\frac{1680914269}{32768} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a\) , \( 96 a - 511\) , \( 1597 a - 8193\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(96a-511\right){x}+1597a-8193$
50.3-l2 50.3-l \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $12.77086107$ 2.504571916 \( \frac{1331}{8} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a\) , \( -4 a + 14\) , \( -10 a + 50\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-4a+14\right){x}-10a+50$
50.3-m1 50.3-m \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.051417767$ $5.991451434$ 5.558356732 \( \frac{416163907}{20480} a - \frac{1060470591}{10240} \) \( \bigl[a\) , \( a + 1\) , \( 0\) , \( 60 a - 228\) , \( -384 a + 2408\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(60a-228\right){x}-384a+2408$
50.3-n1 50.3-n \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.309180125$ $7.188791123$ 5.230726417 \( \frac{176424402637}{7812500} a + \frac{224871461647}{1953125} \) \( \bigl[a\) , \( a\) , \( a\) , \( -2084 a - 10639\) , \( 108795 a + 554742\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-2084a-10639\right){x}+108795a+554742$
50.3-o1 50.3-o \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $3.091227696$ $2.759505239$ 3.345842863 \( \frac{208696255}{2} a - 531584012 \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -754 a - 3842\) , \( 23828 a + 121470\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-754a-3842\right){x}+23828a+121470$
50.3-o2 50.3-o \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $52.55087084$ $0.162323837$ 3.345842863 \( \frac{895930235373410550627295}{512} a + \frac{571045719123349636251427}{64} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -3337174 a - 17016762\) , \( -7500710892 a - 38246267250\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-3337174a-17016762\right){x}-7500710892a-38246267250$
50.3-p1 50.3-p \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.743977986$ 2.690691788 \( -\frac{194613}{8} a - \frac{490007}{4} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -2062 a - 10500\) , \( -119960 a - 611668\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-2062a-10500\right){x}-119960a-611668$
50.3-p2 50.3-p \(\Q(\sqrt{26}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $13.71988993$ 2.690691788 \( \frac{5631243}{2} a - 14356163 \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 3 a + 15\) , \( -a - 9\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(3a+15\right){x}-a-9$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.