Properties

Label 2.0.8.1-39204.9-c4
Base field \(\Q(\sqrt{-2}) \)
Conductor norm \( 39204 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
gp: K = nfinit(Polrev([2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}+\left(-54a-300\right){x}-594a-1969\)
sage: E = EllipticCurve([K([0,0]),K([0,0]),K([0,0]),K([-300,-54]),K([-1969,-594])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,0]),Polrev([-300,-54]),Polrev([-1969,-594])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,0],K![0,0],K![-300,-54],K![-1969,-594]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-108a+126)\) = \((a)^{2}\cdot(-a-1)^{2}\cdot(a-1)^{2}\cdot(a-3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 39204 \) = \(2^{2}\cdot3^{2}\cdot3^{2}\cdot11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-97557696a+22079952)\) = \((a)^{8}\cdot(-a-1)^{7}\cdot(a-1)^{9}\cdot(a-3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 19522532377979136 \) = \(2^{8}\cdot3^{7}\cdot3^{9}\cdot11^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{372736}{27} a - \frac{352256}{27} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-8 : 9 a - 9 : 1\right)$
Height \(0.29823790209733034914803678880178246003\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-11 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.29823790209733034914803678880178246003 \)
Period: \( 0.51816544724116596518392177283874733346 \)
Tamagawa product: \( 96 \)  =  \(3\cdot2^{2}\cdot2^{2}\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 5.2451453173240847639545566558988784877 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(3\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)
\((-a-1)\) \(3\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(2\) \(7\) \(1\)
\((a-1)\) \(3\) \(4\) \(I_{3}^{*}\) Additive \(-1\) \(2\) \(9\) \(3\)
\((a-3)\) \(11\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 39204.9-c consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.