Base field \(\Q(\sqrt{-2}) \)
Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(-3 a + 2 : 6 a + 3 : 1\right)$ | $0.21434535528223309058474677451542975074$ | $\infty$ |
| $\left(-\frac{11}{2} : \frac{9}{4} a : 1\right)$ | $0$ | $2$ |
| $\left(-a + 3 : -2 a - 1 : 1\right)$ | $0$ | $2$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((132a)\) | = | \((a)^{5}\cdot(-a-1)\cdot(a-1)\cdot(a+3)\cdot(a-3)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 34848 \) | = | \(2^{5}\cdot3\cdot3\cdot11\cdot11\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-705672$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-705672)\) | = | \((a)^{6}\cdot(-a-1)^{6}\cdot(a-1)^{6}\cdot(a+3)^{2}\cdot(a-3)^{2}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 497972971584 \) | = | \(2^{6}\cdot3^{6}\cdot3^{6}\cdot11^{2}\cdot11^{2}\) |
|
| |||||
| j-invariant: | $j$ | = | \( -\frac{148877000}{88209} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(1\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.21434535528223309058474677451542975074 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.428690710564466181169493549030859501480 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 2.8399210058123935575861875585290899948 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 288 \) = \(2\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot2\cdot2\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 7.7477900628896346718501702756482509066 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}7.747790063 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.839921 \cdot 0.428691 \cdot 288 } { {4^2 \cdot 2.828427} } \\ & \approx 7.747790063 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((a)\) | \(2\) | \(2\) | \(III\) | Additive | \(1\) | \(5\) | \(6\) | \(0\) |
| \((-a-1)\) | \(3\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
| \((a-1)\) | \(3\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
| \((a+3)\) | \(11\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
| \((a-3)\) | \(11\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation |
|---|---|
| \(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class
34848.5-s
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
| Base field | Curve |
|---|---|
| \(\Q\) | 1056.i2 |
| \(\Q\) | 2112.w2 |