Properties

Label 2.0.8.1-27648.2-t2
Base field Q(2)\Q(\sqrt{-2})
Conductor norm 27648 27648
CM no
Base change no
Q-curve no
Torsion order 2 2
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(2)\Q(\sqrt{-2})

Generator aa, with minimal polynomial x2+2 x^{2} + 2 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([2, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
 

Weierstrass equation

y2=x3+(a+1)x2+(2a10)x+8a2{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(2a-10\right){x}+8a-2
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([1,1]),K([0,0]),K([-10,2]),K([-2,8])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([1,1]),Polrev([0,0]),Polrev([-10,2]),Polrev([-2,8])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![1,1],K![0,0],K![-10,2],K![-2,8]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2:a+4:1)\left(-2 : a + 4 : 1\right)0.862360826337052136413337500538920979400.86236082633705213641333750053892097940\infty
(a+3:0:1)\left(-a + 3 : 0 : 1\right)0022

Invariants

Conductor: N\frak{N} = (96a96)(-96a-96) = (a)10(a1)2(a1)(a)^{10}\cdot(-a-1)^{2}\cdot(a-1)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 27648 27648 = 2103232^{10}\cdot3^{2}\cdot3
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 44928a+148608-44928a+148608
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (44928a+148608)(-44928a+148608) = (a)14(a1)3(a1)10(a)^{14}\cdot(-a-1)^{3}\cdot(a-1)^{10}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 26121388032 26121388032 = 214333102^{14}\cdot3^{3}\cdot3^{10}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 472278459049a+3801852859049 -\frac{4722784}{59049} a + \frac{38018528}{59049}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.86236082633705213641333750053892097940 0.86236082633705213641333750053892097940
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.72472165267410427282667500107784195880 1.72472165267410427282667500107784195880
Global period: Ω(E/K)\Omega(E/K) 3.7565270915393453828782249433865001800 3.7565270915393453828782249433865001800
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 8 8  =  2222\cdot2\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 4.5813191062620558291783576925218088759 4.5813191062620558291783576925218088759
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

4.581319106L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/213.7565271.7247228222.8284274.581319106\begin{aligned}4.581319106 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 3.756527 \cdot 1.724722 \cdot 8 } { {2^2 \cdot 2.828427} } \\ & \approx 4.581319106 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a)(a) 22 22 I0I_0^{*} Additive 11 1010 1414 00
(a1)(-a-1) 33 22 IIIIII Additive 11 22 33 00
(a1)(a-1) 33 22 I10I_{10} Non-split multiplicative 11 11 1010 1010

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 27648.2-t consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.