Generator a, with minimal polynomial
x2+2; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 0, 1]))
gp:K = nfinit(Polrev([2, 0, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
y2=x3+(a+1)x2+(2a−10)x+8a−2
sage:E = EllipticCurve([K([0,0]),K([1,1]),K([0,0]),K([-10,2]),K([-2,8])])
gp:E = ellinit([Polrev([0,0]),Polrev([1,1]),Polrev([0,0]),Polrev([-10,2]),Polrev([-2,8])], K);
magma:E := EllipticCurve([K![0,0],K![1,1],K![0,0],K![-10,2],K![-2,8]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z⊕Z/2Z
P | h^(P) | Order |
(−2:a+4:1) | 0.86236082633705213641333750053892097940 | ∞ |
(−a+3:0:1) | 0 | 2 |
Conductor: |
N |
= |
(−96a−96) |
= |
(a)10⋅(−a−1)2⋅(a−1) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
27648 |
= |
210⋅32⋅3 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−44928a+148608 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−44928a+148608) |
= |
(a)14⋅(−a−1)3⋅(a−1)10 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
26121388032 |
= |
214⋅33⋅310 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
−590494722784a+5904938018528 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
0.86236082633705213641333750053892097940
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
1.72472165267410427282667500107784195880
|
Global period: |
Ω(E/K) | ≈ |
3.7565270915393453828782249433865001800 |
Tamagawa product: |
∏pcp | = |
8
= 2⋅2⋅2
|
Torsion order: |
#E(K)tor | = |
2 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 4.5813191062620558291783576925218088759 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
4.581319106≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈22⋅2.8284271⋅3.756527⋅1.724722⋅8≈4.581319106
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.