Base field \(\Q(\sqrt{-2}) \)
Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(4 a - 7 : 3 a + 4 : 1\right)$ | $0$ | $2$ |
$\left(-2 a + \frac{7}{2} : -\frac{9}{4} a - 2 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((36a)\) | = | \((a)^{5}\cdot(-a-1)^{2}\cdot(a-1)^{2}\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 2592 \) | = | \(2^{5}\cdot3^{2}\cdot3^{2}\) |
| |||||
Discriminant: | $\Delta$ | = | $-524880a-1207224$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-524880a-1207224)\) | = | \((a)^{6}\cdot(-a-1)^{8}\cdot(a-1)^{14}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 2008387814976 \) | = | \(2^{6}\cdot3^{8}\cdot3^{14}\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{100738000}{6561} a + \frac{45365000}{6561} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(0\) |
Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 2.2356618879086260991793143617002792896 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 32 \) = \(2\cdot2^{2}\cdot2^{2}\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 1.5808516813805086137099439204734894456 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}1.580851681 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.235662 \cdot 1 \cdot 32 } { {4^2 \cdot 2.828427} } \\ & \approx 1.580851681 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((a)\) | \(2\) | \(2\) | \(III\) | Additive | \(-1\) | \(5\) | \(6\) | \(0\) |
\((-a-1)\) | \(3\) | \(4\) | \(I_{2}^{*}\) | Additive | \(-1\) | \(2\) | \(8\) | \(2\) |
\((a-1)\) | \(3\) | \(4\) | \(I_{8}^{*}\) | Additive | \(-1\) | \(2\) | \(14\) | \(8\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
2592.3-f
consists of curves linked by isogenies of
degrees dividing 16.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.