Base field \(\Q(\sqrt{-2}) \)
Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-16 a - 21 : 73 a - 176 : 1\right)$ | $1.8137303950654075072686213898323383261$ | $\infty$ |
$\left(-\frac{17}{2} : \frac{17}{4} a : 1\right)$ | $0$ | $2$ |
$\left(-16 a + 4 : -2 a - 16 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((132)\) | = | \((a)^{4}\cdot(-a-1)\cdot(a-1)\cdot(a+3)\cdot(a-3)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 17424 \) | = | \(2^{4}\cdot3\cdot3\cdot11\cdot11\) |
| |||||
Discriminant: | $\Delta$ | = | $-14632814592$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-14632814592)\) | = | \((a)^{22}\cdot(-a-1)^{10}\cdot(a-1)^{10}\cdot(a+3)^{2}\cdot(a-3)^{2}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 214119262883848126464 \) | = | \(2^{22}\cdot3^{10}\cdot3^{10}\cdot11^{2}\cdot11^{2}\) |
| |||||
j-invariant: | $j$ | = | \( \frac{168105213359}{228637728} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 1.8137303950654075072686213898323383261 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 3.6274607901308150145372427796646766522 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 0.560225554238699981274849680716370886460 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 64 \) = \(2^{2}\cdot2\cdot2\cdot2\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.8739594721749081514005950388742900729 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}2.873959472 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.560226 \cdot 3.627461 \cdot 64 } { {4^2 \cdot 2.828427} } \\ & \approx 2.873959472 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((a)\) | \(2\) | \(4\) | \(I_{14}^{*}\) | Additive | \(1\) | \(4\) | \(22\) | \(10\) |
\((-a-1)\) | \(3\) | \(2\) | \(I_{10}\) | Non-split multiplicative | \(1\) | \(1\) | \(10\) | \(10\) |
\((a-1)\) | \(3\) | \(2\) | \(I_{10}\) | Non-split multiplicative | \(1\) | \(1\) | \(10\) | \(10\) |
\((a+3)\) | \(11\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
\((a-3)\) | \(11\) | \(2\) | \(I_{2}\) | Non-split multiplicative | \(1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2Cs |
\(5\) | 5B.4.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 5 and 10.
Its isogeny class
17424.5-b
consists of curves linked by isogenies of
degrees dividing 20.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 528.a4 |
\(\Q\) | 2112.n4 |