Generator a, with minimal polynomial
x2−x+2; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
gp:K = nfinit(Polrev([2, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
y2=x3−x2−2x+1
sage:E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-2,0]),K([1,0])])
gp:E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-2,0]),Polrev([1,0])], K);
magma:E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-2,0],K![1,0]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z⊕Z/3Z
P | h^(P) | Order |
(−a+2:2a−1:1) | 0.086035450966578930195721660820160569546 | ∞ |
(−2:−2a+1:1) | 0 | 3 |
Conductor: |
N |
= |
(28) |
= |
(a)2⋅(−a+1)2⋅(−2a+1)2 |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
784 |
= |
22⋅22⋅72 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
784 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(784) |
= |
(a)4⋅(−a+1)4⋅(−2a+1)4 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
614656 |
= |
24⋅24⋅74 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
1792 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
0.086035450966578930195721660820160569546
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
0.1720709019331578603914433216403211390920
|
Global period: |
Ω(E/K) | ≈ |
9.0415355856050104008888145051174614866 |
Tamagawa product: |
∏pcp | = |
27
= 3⋅3⋅3
|
Torsion order: |
#E(K)tor | = |
3 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 1.7640945805104228875420790787208623829 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
1.764094581≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈32⋅2.6457511⋅9.041536⋅0.172071⋅27≈1.764094581
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
3.
Its isogeny class
784.3-a
consists of curves linked by isogenies of
degree 3.