Properties

Label 2.0.7.1-784.3-a1
Base field Q(7)\Q(\sqrt{-7})
Conductor norm 784 784
CM no
Base change yes
Q-curve yes
Torsion order 3 3
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(7)\Q(\sqrt{-7})

Generator aa, with minimal polynomial x2x+2 x^{2} - x + 2 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([2, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

y2=x3x22x+1{y}^2={x}^{3}-{x}^{2}-2{x}+1
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-2,0]),K([1,0])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-2,0]),Polrev([1,0])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-2,0],K![1,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/3Z\Z \oplus \Z/{3}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(a+2:2a1:1)\left(-a + 2 : 2 a - 1 : 1\right)0.0860354509665789301957216608201605695460.086035450966578930195721660820160569546\infty
(2:2a+1:1)\left(-2 : -2 a + 1 : 1\right)0033

Invariants

Conductor: N\frak{N} = (28)(28) = (a)2(a+1)2(2a+1)2(a)^{2}\cdot(-a+1)^{2}\cdot(-2a+1)^{2}
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 784 784 = 2222722^{2}\cdot2^{2}\cdot7^{2}
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 784784
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (784)(784) = (a)4(a+1)4(2a+1)4(a)^{4}\cdot(-a+1)^{4}\cdot(-2a+1)^{4}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 614656 614656 = 2424742^{4}\cdot2^{4}\cdot7^{4}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 1792 1792
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.086035450966578930195721660820160569546 0.086035450966578930195721660820160569546
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 0.1720709019331578603914433216403211390920 0.1720709019331578603914433216403211390920
Global period: Ω(E/K)\Omega(E/K) 9.0415355856050104008888145051174614866 9.0415355856050104008888145051174614866
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 27 27  =  3333\cdot3\cdot3
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 33
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 1.7640945805104228875420790787208623829 1.7640945805104228875420790787208623829
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

1.764094581L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/219.0415360.17207127322.6457511.764094581\begin{aligned}1.764094581 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 9.041536 \cdot 0.172071 \cdot 27 } { {3^2 \cdot 2.645751} } \\ & \approx 1.764094581 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a)(a) 22 33 IVIV Additive 1-1 22 44 00
(a+1)(-a+1) 22 33 IVIV Additive 1-1 22 44 00
(2a+1)(-2a+1) 77 33 IVIV Additive 11 22 44 00

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2Cn
33 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 784.3-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 196.b2
Q\Q 196.a2