Properties

Label 2.0.7.1-45056.14-y1
Base field Q(7)\Q(\sqrt{-7})
Conductor norm 45056 45056
CM no
Base change no
Q-curve no
Torsion order 2 2
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(7)\Q(\sqrt{-7})

Generator aa, with minimal polynomial x2x+2 x^{2} - x + 2 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([2, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

y2=x3+(a+1)x2+(27a+61)x73a77{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-27a+61\right){x}-73a-77
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([1,1]),K([0,0]),K([61,-27]),K([-77,-73])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([1,1]),Polrev([0,0]),Polrev([61,-27]),Polrev([-77,-73])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![1,1],K![0,0],K![61,-27],K![-77,-73]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(3a1:0:1)\left(3 a - 1 : 0 : 1\right)0022

Invariants

Conductor: N\frak{N} = (128a+64)(128a+64) = (a)6(a+1)6(2a+1)(a)^{6}\cdot(-a+1)^{6}\cdot(2a+1)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 45056 45056 = 2626112^{6}\cdot2^{6}\cdot11
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 345088a54272-345088a-54272
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (345088a54272)(-345088a-54272) = (a)10(a+1)21(2a+1)2(a)^{10}\cdot(-a+1)^{21}\cdot(2a+1)^{2}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 259845521408 259845521408 = 2102211122^{10}\cdot2^{21}\cdot11^{2}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 1374871968a22437003484 -\frac{1374871}{968} a - \frac{22437003}{484}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 2.5147445761182747099021912061892684456 2.5147445761182747099021912061892684456
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 16 16  =  22222\cdot2^{2}\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 3.8019364338614248239509039054870860288 3.8019364338614248239509039054870860288
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

3.801936434L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/212.514745116222.6457513.801936434\begin{aligned}3.801936434 \approx L(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.514745 \cdot 1 \cdot 16 } { {2^2 \cdot 2.645751} } \\ & \approx 3.801936434 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a)(a) 22 22 I0I_0^{*} Additive 11 66 1010 00
(a+1)(-a+1) 22 44 I11I_{11}^{*} Additive 11 66 2121 33
(2a+1)(2a+1) 1111 22 I2I_{2} Split multiplicative 1-1 11 22 22

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B
33 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 45056.14-y consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.