Generator a, with minimal polynomial
x2−x+2; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
gp:K = nfinit(Polrev([2, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
y2=x3+(a+1)x2+(−27a+61)x−73a−77
sage:E = EllipticCurve([K([0,0]),K([1,1]),K([0,0]),K([61,-27]),K([-77,-73])])
gp:E = ellinit([Polrev([0,0]),Polrev([1,1]),Polrev([0,0]),Polrev([61,-27]),Polrev([-77,-73])], K);
magma:E := EllipticCurve([K![0,0],K![1,1],K![0,0],K![61,-27],K![-77,-73]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z/2Z
Conductor: |
N |
= |
(128a+64) |
= |
(a)6⋅(−a+1)6⋅(2a+1) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
45056 |
= |
26⋅26⋅11 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−345088a−54272 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−345088a−54272) |
= |
(a)10⋅(−a+1)21⋅(2a+1)2 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
259845521408 |
= |
210⋅221⋅112 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
−9681374871a−48422437003 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
0
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
0 |
Regulator:
|
Reg(E/K) |
= |
1
|
Néron-Tate Regulator:
|
RegNT(E/K) |
= |
1
|
Global period: |
Ω(E/K) | ≈ |
2.5147445761182747099021912061892684456 |
Tamagawa product: |
∏pcp | = |
16
= 2⋅22⋅2
|
Torsion order: |
#E(K)tor | = |
2 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 3.8019364338614248239509039054870860288 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
3.801936434≈L(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈22⋅2.6457511⋅2.514745⋅1⋅16≈3.801936434
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2, 3 and 6.
Its isogeny class
45056.14-y
consists of curves linked by isogenies of
degrees dividing 6.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.