Base field \(\Q(\sqrt{-7}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $\left(2 a - 2 : a + 8 : 1\right)$ | $0.18596332966897334109300925837858921546$ | $\infty$ | 
| $\left(\frac{3}{4} a + \frac{3}{2} : -\frac{9}{8} a + \frac{3}{4} : 1\right)$ | $0$ | $2$ | 
Invariants
| Conductor: | $\frak{N}$ | = | \((102a-180)\) | = | \((a)^{4}\cdot(-a+1)\cdot(3)\cdot(2a+1)^{2}\) | 
|  | |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 34848 \) | = | \(2^{4}\cdot2\cdot9\cdot11^{2}\) | 
|  | |||||
| Discriminant: | $\Delta$ | = | $21816a-18000$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((21816a-18000)\) | = | \((a)^{10}\cdot(-a+1)^{3}\cdot(3)^{2}\cdot(2a+1)^{3}\) | 
|  | |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 883187712 \) | = | \(2^{10}\cdot2^{3}\cdot9^{2}\cdot11^{3}\) | 
|  | |||||
| j-invariant: | $j$ | = | \( -\frac{15379}{24} a - \frac{213109}{36} \) | ||
|  | |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|  | |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) | 
|  | |||
| Mordell-Weil rank: | $r$ | = | \(1\) | 
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.18596332966897334109300925837858921546 \) | 
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.371926659337946682186018516757178430920 \) | 
| Global period: | $\Omega(E/K)$ | ≈ | \( 4.5729514828295440899108184356856529764 \) | 
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 48 \) = \(2^{2}\cdot3\cdot2\cdot2\) | 
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) | 
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 7.7141153571486842246026335882305818795 \) | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) | 
BSD formula
$$\begin{aligned}7.714115357 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 4.572951 \cdot 0.371927 \cdot 48 } { {2^2 \cdot 2.645751} } \\ & \approx 7.714115357 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) | 
|---|---|---|---|---|---|---|---|---|
| \((a)\) | \(2\) | \(4\) | \(I_{2}^{*}\) | Additive | \(1\) | \(4\) | \(10\) | \(0\) | 
| \((-a+1)\) | \(2\) | \(3\) | \(I_{3}\) | Split multiplicative | \(-1\) | \(1\) | \(3\) | \(3\) | 
| \((3)\) | \(9\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) | 
| \((2a+1)\) | \(11\) | \(2\) | \(III\) | Additive | \(1\) | \(2\) | \(3\) | \(0\) | 
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation | 
|---|---|
| \(2\) | 2B | 
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies  of degree \(d\) for \(d=\)
2.
Its isogeny class
34848.6-g
consists of  curves linked by isogenies of
degree 2.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.
