Base field \(\Q(\sqrt{-7}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $\left(-\frac{703}{252} a + \frac{29}{252} : \frac{72235}{10584} a - \frac{5123}{392} : 1\right)$ | $5.4615707246689268925857387493198416243$ | $\infty$ | 
| $\left(-3 a + 3 : -3 : 1\right)$ | $0$ | $2$ | 
Invariants
| Conductor: | $\frak{N}$ | = | \((141a-78)\) | = | \((a)^{5}\cdot(3)\cdot(2a+1)^{2}\) | 
|  | |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 34848 \) | = | \(2^{5}\cdot9\cdot11^{2}\) | 
|  | |||||
| Discriminant: | $\Delta$ | = | $225957a-134142$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((225957a-134142)\) | = | \((a)^{9}\cdot(3)\cdot(2a+1)^{7}\) | 
|  | |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 89796883968 \) | = | \(2^{9}\cdot9\cdot11^{7}\) | 
|  | |||||
| j-invariant: | $j$ | = | \( -\frac{359177}{11} a + \frac{396314}{33} \) | ||
|  | |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|  | |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) | 
|  | |||
| Mordell-Weil rank: | $r$ | = | \(1\) | 
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 5.4615707246689268925857387493198416243 \) | 
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 10.923141449337853785171477498639683249 \) | 
| Global period: | $\Omega(E/K)$ | ≈ | \( 2.7666683390073016989855779836588253108 \) | 
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 2 \) = \(1\cdot1\cdot2\) | 
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) | 
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 5.7111772909263416113118744307711097131 \) | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) | 
BSD formula
$$\begin{aligned}5.711177291 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.766668 \cdot 10.923141 \cdot 2 } { {2^2 \cdot 2.645751} } \\ & \approx 5.711177291 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) | 
|---|---|---|---|---|---|---|---|---|
| \((a)\) | \(2\) | \(1\) | \(I_0^{*}\) | Additive | \(-1\) | \(5\) | \(9\) | \(0\) | 
| \((3)\) | \(9\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) | 
| \((2a+1)\) | \(11\) | \(2\) | \(I_{1}^{*}\) | Additive | \(-1\) | \(2\) | \(7\) | \(1\) | 
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
| prime | Image of Galois Representation | 
|---|---|
| \(2\) | 2B | 
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies  of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
34848.3-d
consists of  curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.
