Learn more

Refine search


Results (1-50 of 124 matches)

Next   Download to        
Label Class Base field Conductor norm Rank Torsion CM Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
28672.7-a1 28672.7-a \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.393477166$ $2.008147859$ 4.230644320 \( \frac{516132}{7} a - \frac{52056}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 12 a + 16\) , \( -24 a + 56\bigr] \) ${y}^2={x}^{3}+\left(12a+16\right){x}-24a+56$
28672.7-a2 28672.7-a \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.696738583$ $2.008147859$ 4.230644320 \( \frac{432}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 4\) , \( 16\bigr] \) ${y}^2={x}^{3}+4{x}+16$
28672.7-a3 28672.7-a \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $0.696738583$ $0.502036964$ 4.230644320 \( \frac{11090466}{2401} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -236\) , \( -1104\bigr] \) ${y}^2={x}^{3}-236{x}-1104$
28672.7-a4 28672.7-a \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.393477166$ $1.004073929$ 4.230644320 \( \frac{740772}{49} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -76\) , \( 240\bigr] \) ${y}^2={x}^{3}-76{x}+240$
28672.7-a5 28672.7-a \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.393477166$ $2.008147859$ 4.230644320 \( -\frac{516132}{7} a + \frac{464076}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -12 a + 28\) , \( 24 a + 32\bigr] \) ${y}^2={x}^{3}+\left(-12a+28\right){x}+24a+32$
28672.7-a6 28672.7-a \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/4\Z$ $2.786954333$ $0.502036964$ 4.230644320 \( \frac{1443468546}{7} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1196\) , \( 15920\bigr] \) ${y}^2={x}^{3}-1196{x}+15920$
28672.7-b1 28672.7-b \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.361504906$ $1.906024945$ 3.923365441 \( \frac{24238}{49} a + \frac{20204}{49} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 7 a + 2\) , \( 7 a + 4\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(7a+2\right){x}+7a+4$
28672.7-b2 28672.7-b \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.680752453$ $1.906024945$ 3.923365441 \( -\frac{10452}{7} a + \frac{23480}{7} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 9 a - 15\) , \( 13 a + 1\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(9a-15\right){x}+13a+1$
28672.7-b3 28672.7-b \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $0.340376226$ $1.906024945$ 3.923365441 \( \frac{88712}{7} a + \frac{28248}{7} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 16 a - 1\) , \( 16 a + 31\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(16a-1\right){x}+16a+31$
28672.7-b4 28672.7-b \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.361504906$ $0.953012472$ 3.923365441 \( -\frac{39051258}{7} a + \frac{13710596}{7} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 129 a - 215\) , \( 933 a - 711\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(129a-215\right){x}+933a-711$
28672.7-c1 28672.7-c \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.361504906$ $0.953012472$ 3.923365441 \( \frac{39051258}{7} a - \frac{25340662}{7} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -127 a - 87\) , \( -1061 a + 135\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-127a-87\right){x}-1061a+135$
28672.7-c2 28672.7-c \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.361504906$ $1.906024945$ 3.923365441 \( -\frac{24238}{49} a + \frac{44442}{49} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -7 a + 9\) , \( -7 a + 11\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(-7a+9\right){x}-7a+11$
28672.7-c3 28672.7-c \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.680752453$ $1.906024945$ 3.923365441 \( \frac{10452}{7} a + \frac{13028}{7} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -7 a - 7\) , \( -21 a + 7\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-7a-7\right){x}-21a+7$
28672.7-c4 28672.7-c \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $0.340376226$ $1.906024945$ 3.923365441 \( -\frac{88712}{7} a + \frac{116960}{7} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -16 a + 15\) , \( -16 a + 47\bigr] \) ${y}^2={x}^{3}+{x}^{2}+\left(-16a+15\right){x}-16a+47$
28672.7-d1 28672.7-d \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.844493815$ $1.598934821$ 4.082894903 \( -\frac{4}{7} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( 33\bigr] \) ${y}^2={x}^{3}-{x}^{2}-{x}+33$
28672.7-d2 28672.7-d \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $0.422246907$ $1.598934821$ 4.082894903 \( \frac{59930}{7} a + \frac{286932}{7} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 17 a - 39\) , \( -53 a + 55\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(17a-39\right){x}-53a+55$
28672.7-d3 28672.7-d \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $0.422246907$ $1.598934821$ 4.082894903 \( -\frac{59930}{7} a + \frac{346862}{7} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -15 a - 23\) , \( 69 a + 25\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-15a-23\right){x}+69a+25$
28672.7-d4 28672.7-d \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.688987630$ $0.799467410$ 4.082894903 \( \frac{3543122}{49} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -161\) , \( 833\bigr] \) ${y}^2={x}^{3}-{x}^{2}-161{x}+833$
28672.7-e1 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $12.63051067$ $0.109427141$ 4.179140127 \( -\frac{548347731625}{1835008} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -10913\) , \( 436447\bigr] \) ${y}^2={x}^{3}+{x}^{2}-10913{x}+436447$
28672.7-e2 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $2.105085112$ $0.328281425$ 4.179140127 \( \frac{10538337875}{200704} a - \frac{36575498625}{200704} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( 641 a + 393\) , \( -3355 a + 15449\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(641a+393\right){x}-3355a+15449$
28672.7-e3 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $2.105085112$ $0.328281425$ 4.179140127 \( -\frac{10538337875}{200704} a - \frac{13018580375}{100352} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( -639 a + 1033\) , \( 2715 a + 13127\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-639a+1033\right){x}+2715a+13127$
28672.7-e4 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $0.701695037$ $0.984844277$ 4.179140127 \( \frac{831875}{112} a - \frac{499125}{56} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( a + 73\) , \( -165 a + 135\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(a+73\right){x}-165a+135$
28672.7-e5 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $0.701695037$ $0.984844277$ 4.179140127 \( -\frac{831875}{112} a - \frac{166375}{112} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( a + 73\) , \( 165 a - 103\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(a+73\right){x}+165a-103$
28672.7-e6 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.403390075$ $0.984844277$ 4.179140127 \( -\frac{15625}{28} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -33\) , \( -161\bigr] \) ${y}^2={x}^{3}+{x}^{2}-33{x}-161$
28672.7-e7 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.210170225$ $0.328281425$ 4.179140127 \( \frac{9938375}{21952} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 287\) , \( 3231\bigr] \) ${y}^2={x}^{3}+{x}^{2}+287{x}+3231$
28672.7-e8 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $6.315255337$ $0.109427141$ 4.179140127 \( \frac{70135314719125}{481036337152} a + \frac{288417990127625}{481036337152} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -1919 a - 567\) , \( -13275 a + 80665\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1919a-567\right){x}-13275a+80665$
28672.7-e9 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $6.315255337$ $0.109427141$ 4.179140127 \( -\frac{70135314719125}{481036337152} a + \frac{179276652423375}{240518168576} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 1921 a - 2487\) , \( 15195 a + 64903\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(1921a-2487\right){x}+15195a+64903$
28672.7-e10 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $8.420340450$ $0.164140712$ 4.179140127 \( \frac{4956477625}{941192} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -2273\) , \( 33439\bigr] \) ${y}^2={x}^{3}+{x}^{2}-2273{x}+33439$
28672.7-e11 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $2.806780150$ $0.492422138$ 4.179140127 \( \frac{128787625}{98} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -673\) , \( -6945\bigr] \) ${y}^2={x}^{3}+{x}^{2}-673{x}-6945$
28672.7-e12 28672.7-e \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $25.26102135$ $0.054713570$ 4.179140127 \( \frac{2251439055699625}{25088} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -174753\) , \( 28059871\bigr] \) ${y}^2={x}^{3}+{x}^{2}-174753{x}+28059871$
28672.7-f1 28672.7-f \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.324661931$ $2.495279627$ 4.997297996 \( \frac{1111000}{7} a - \frac{1378000}{7} \) \( \bigl[0\) , \( a + 1\) , \( 0\) , \( 16 a - 12\) , \( 30 a - 10\bigr] \) ${y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(16a-12\right){x}+30a-10$
28672.7-f2 28672.7-f \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.324661931$ $2.495279627$ 4.997297996 \( -\frac{1111000}{7} a - \frac{267000}{7} \) \( \bigl[0\) , \( -a - 1\) , \( 0\) , \( -14 a + 3\) , \( -15 a + 17\bigr] \) ${y}^2={x}^{3}+\left(-a-1\right){x}^{2}+\left(-14a+3\right){x}-15a+17$
28672.7-f3 28672.7-f \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.662330965$ $2.495279627$ 4.997297996 \( \frac{8000}{7} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 7\) , \( -7\bigr] \) ${y}^2={x}^{3}-{x}^{2}+7{x}-7$
28672.7-f4 28672.7-f \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.324661931$ $1.247639813$ 4.997297996 \( \frac{125000}{49} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -33\) , \( -31\bigr] \) ${y}^2={x}^{3}-{x}^{2}-33{x}-31$
28672.7-g1 28672.7-g \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.333489098$ $1.087536128$ 4.385045760 \( \frac{91484}{49} a - \frac{488028}{49} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -43 a + 9\) , \( -119 a + 173\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-43a+9\right){x}-119a+173$
28672.7-g2 28672.7-g \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.666744549$ $2.175072256$ 4.385045760 \( \frac{3408}{7} a - 1360 \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -3 a + 9\) , \( -7 a - 3\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-3a+9\right){x}-7a-3$
28672.7-g3 28672.7-g \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.333489098$ $4.350144512$ 4.385045760 \( -\frac{21696}{7} a - \frac{9088}{7} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 2 a - 1\) , \( -a - 3\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(2a-1\right){x}-a-3$
28672.7-g4 28672.7-g \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.333489098$ $1.087536128$ 4.385045760 \( -\frac{12673028}{7} a + \frac{25007348}{7} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -43 a + 169\) , \( -439 a - 179\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-43a+169\right){x}-439a-179$
28672.7-h1 28672.7-h \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $0.489210671$ 1.479234028 \( -\frac{4096655365}{28} a - \frac{1660660737}{28} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -853 a + 1022\) , \( 809 a - 17334\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-853a+1022\right){x}+809a-17334$
28672.7-h2 28672.7-h \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $0.978421342$ 1.479234028 \( \frac{13647889}{14} a - \frac{94721547}{14} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 159 a - 58\) , \( 491 a + 798\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(159a-58\right){x}+491a+798$
28672.7-h3 28672.7-h \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.978421342$ 1.479234028 \( \frac{1145925}{112} a - \frac{1290439}{112} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -53 a + 62\) , \( 9 a - 246\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-53a+62\right){x}+9a-246$
28672.7-h4 28672.7-h \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $0.489210671$ 1.479234028 \( \frac{5786513}{4802} a - \frac{2104499}{4802} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 85 a + 105\) , \( -169 a + 1299\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(85a+105\right){x}-169a+1299$
28672.7-h5 28672.7-h \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $0.978421342$ 1.479234028 \( \frac{138325}{1792} a - \frac{774199}{1792} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( 21 a - 23\) , \( 105 a - 51\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(21a-23\right){x}+105a-51$
28672.7-h6 28672.7-h \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $0.978421342$ 1.479234028 \( -\frac{361845}{196} a + \frac{274391}{196} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 5 a - 55\) , \( -41 a + 147\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(5a-55\right){x}-41a+147$
28672.7-i1 28672.7-i \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.333489098$ $1.087536128$ 4.385045760 \( -\frac{91484}{49} a - \frac{396544}{49} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 43 a - 34\) , \( 119 a + 54\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(43a-34\right){x}+119a+54$
28672.7-i2 28672.7-i \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.333489098$ $4.350144512$ 4.385045760 \( \frac{21696}{7} a - \frac{30784}{7} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( -2 a + 1\) , \( a - 4\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(-2a+1\right){x}+a-4$
28672.7-i3 28672.7-i \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.666744549$ $2.175072256$ 4.385045760 \( -\frac{3408}{7} a - \frac{6112}{7} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 3 a + 6\) , \( 7 a - 10\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(3a+6\right){x}+7a-10$
28672.7-i4 28672.7-i \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $1$ $\Z/2\Z$ $1.333489098$ $1.087536128$ 4.385045760 \( \frac{12673028}{7} a + \frac{12334320}{7} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 43 a + 126\) , \( 439 a - 618\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(43a+126\right){x}+439a-618$
28672.7-j1 28672.7-j \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $0$ $\Z/2\Z$ $1$ $1.736072149$ 2.624694380 \( -\frac{2525}{7} a + \frac{10646}{7} \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 11 a - 2\) , \( -9 a + 22\bigr] \) ${y}^2={x}^{3}-a{x}^{2}+\left(11a-2\right){x}-9a+22$
28672.7-j2 28672.7-j \(\Q(\sqrt{-7}) \) \( 2^{12} \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $1.736072149$ 2.624694380 \( \frac{3555}{7} a + \frac{12302}{7} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( -3 a + 17\) , \( -17 a + 11\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(-3a+17\right){x}-17a+11$
Next   Download to        

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.