Properties

Label 2.0.7.1-28512.10-e2
Base field Q(7)\Q(\sqrt{-7})
Conductor norm 28512 28512
CM no
Base change no
Q-curve no
Torsion order 4 4
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(7)\Q(\sqrt{-7})

Generator aa, with minimal polynomial x2x+2 x^{2} - x + 2 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([2, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

y2+(a+1)xy+(a+1)y=x3+x2+(93a+95)x+31a549{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-93a+95\right){x}+31a-549
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([1,0]),K([1,1]),K([95,-93]),K([-549,31])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([1,0]),Polrev([1,1]),Polrev([95,-93]),Polrev([-549,31])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![1,0],K![1,1],K![95,-93],K![-549,31]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/4Z\Z \oplus \Z/{4}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(a+5:6a22:1)\left(a + 5 : 6 a - 22 : 1\right)1.12553087953137395700258358759431392931.1255308795313739570025835875943139293\infty
(a3:18a+2:1)\left(a - 3 : -18 a + 2 : 1\right)0044

Invariants

Conductor: N\frak{N} = (54a+126)(54a+126) = (a)(a+1)4(3)2(2a+1)(a)\cdot(-a+1)^{4}\cdot(3)^{2}\cdot(2a+1)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 28512 28512 = 22492112\cdot2^{4}\cdot9^{2}\cdot11
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 17915904a8957952-17915904a-8957952
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (17915904a8957952)(-17915904a-8957952) = (a)12(a+1)12(3)7(2a+1)(a)^{12}\cdot(-a+1)^{12}\cdot(3)^{7}\cdot(2a+1)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 882693944377344 882693944377344 = 21221297112^{12}\cdot2^{12}\cdot9^{7}\cdot11
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 837849187135168a663012145135168 \frac{837849187}{135168} a - \frac{663012145}{135168}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 1.1255308795313739570025835875943139293 1.1255308795313739570025835875943139293
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 2.2510617590627479140051671751886278586 2.2510617590627479140051671751886278586
Global period: Ω(E/K)\Omega(E/K) 1.42930189168260703530188978819338700178 1.42930189168260703530188978819338700178
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 96 96  =  (223)2221( 2^{2} \cdot 3 )\cdot2\cdot2^{2}\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 44
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 7.2964835744024663042183504001996404976 7.2964835744024663042183504001996404976
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

7.296483574L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/211.4293022.25106296422.6457517.296483574\begin{aligned}7.296483574 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 1.429302 \cdot 2.251062 \cdot 96 } { {4^2 \cdot 2.645751} } \\ & \approx 7.296483574 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(a)(a) 22 1212 I12I_{12} Split multiplicative 1-1 11 1212 1212
(a+1)(-a+1) 22 22 I4I_{4}^{*} Additive 1-1 44 1212 00
(3)(3) 99 44 I1I_{1}^{*} Additive 11 22 77 11
(2a+1)(2a+1) 1111 11 I1I_{1} Non-split multiplicative 11 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 28512.10-e consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.