Generator a, with minimal polynomial
x2−x+2; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
gp:K = nfinit(Polrev([2, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
y2+(a+1)xy+(a+1)y=x3+x2+(−93a+95)x+31a−549
sage:E = EllipticCurve([K([1,1]),K([1,0]),K([1,1]),K([95,-93]),K([-549,31])])
gp:E = ellinit([Polrev([1,1]),Polrev([1,0]),Polrev([1,1]),Polrev([95,-93]),Polrev([-549,31])], K);
magma:E := EllipticCurve([K![1,1],K![1,0],K![1,1],K![95,-93],K![-549,31]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z⊕Z/4Z
P | h^(P) | Order |
(a+5:6a−22:1) | 1.1255308795313739570025835875943139293 | ∞ |
(a−3:−18a+2:1) | 0 | 4 |
Conductor: |
N |
= |
(54a+126) |
= |
(a)⋅(−a+1)4⋅(3)2⋅(2a+1) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
28512 |
= |
2⋅24⋅92⋅11 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−17915904a−8957952 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−17915904a−8957952) |
= |
(a)12⋅(−a+1)12⋅(3)7⋅(2a+1) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
882693944377344 |
= |
212⋅212⋅97⋅11 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
135168837849187a−135168663012145 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
1.1255308795313739570025835875943139293
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
2.2510617590627479140051671751886278586
|
Global period: |
Ω(E/K) | ≈ |
1.42930189168260703530188978819338700178 |
Tamagawa product: |
∏pcp | = |
96
= (22⋅3)⋅2⋅22⋅1
|
Torsion order: |
#E(K)tor | = |
4 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 7.2964835744024663042183504001996404976 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
7.296483574≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈42⋅2.6457511⋅1.429302⋅2.251062⋅96≈7.296483574
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2 and 4.
Its isogeny class
28512.10-e
consists of curves linked by isogenies of
degrees dividing 4.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.