Properties

Label 2.0.7.1-23716.4-e3
Base field \(\Q(\sqrt{-7}) \)
Conductor norm \( 23716 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-7}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, -1, 1]))
 
gp: K = nfinit(Polrev([2, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(361a-505\right){x}-787a+1306\)
sage: E = EllipticCurve([K([1,0]),K([0,1]),K([1,0]),K([-505,361]),K([1306,-787])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,1]),Polrev([1,0]),Polrev([-505,361]),Polrev([1306,-787])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,1],K![1,0],K![-505,361],K![1306,-787]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-112a+14)\) = \((a)\cdot(-a+1)\cdot(-2a+1)^{2}\cdot(-2a+3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 23716 \) = \(2\cdot2\cdot7^{2}\cdot11^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-1200730496a-11540473728)\) = \((a)^{7}\cdot(-a+1)^{14}\cdot(-2a+1)^{9}\cdot(-2a+3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 149923040058203439104 \) = \(2^{7}\cdot2^{14}\cdot7^{9}\cdot11^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1875341}{16384} a + \frac{13640585}{8192} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{4} a + \frac{9}{4} : -\frac{1}{8} a - \frac{13}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.28597806071387926766836432679263058848 \)
Tamagawa product: \( 56 \)  =  \(1\cdot( 2 \cdot 7 )\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.0265073162778206405652448574959564162 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)
\((-a+1)\) \(2\) \(14\) \(I_{14}\) Split multiplicative \(-1\) \(1\) \(14\) \(14\)
\((-2a+1)\) \(7\) \(2\) \(III^{*}\) Additive \(-1\) \(2\) \(9\) \(0\)
\((-2a+3)\) \(11\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.6.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 23716.4-e consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.