Base field \(\Q(\sqrt{-7}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 2 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $\left(4 : -7 : 1\right)$ | $0.24003383182858753651646980838458182545$ | $\infty$ |
| $\left(0 : a - 1 : 1\right)$ | $0.68231214962503243753493318737958634079$ | $\infty$ |
Invariants
| Conductor: | $\frak{N}$ | = | \((143)\) | = | \((-2a+3)\cdot(2a+1)\cdot(13)\) |
|
| |||||
| Conductor norm: | $N(\frak{N})$ | = | \( 20449 \) | = | \(11\cdot11\cdot169\) |
|
| |||||
| Discriminant: | $\Delta$ | = | $-1859$ | ||
| Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-1859)\) | = | \((-2a+3)\cdot(2a+1)\cdot(13)^{2}\) |
|
| |||||
| Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 3455881 \) | = | \(11\cdot11\cdot169^{2}\) |
|
| |||||
| j-invariant: | $j$ | = | \( -\frac{262144}{1859} \) | ||
|
| |||||
| Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
|
| |||||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | ||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | \( 2 \) |
|
|
|||
| Mordell-Weil rank: | $r$ | = | \(2\) |
| Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.16377799977769709267384078580821979127 \) |
| Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.655111999110788370695363143232879165080 \) |
| Global period: | $\Omega(E/K)$ | ≈ | \( 7.9418331905927619744647585025460836860 \) |
| Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 2 \) = \(1\cdot1\cdot2\) |
| Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(1\) |
| Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.9329397259186463288051265597874399417 \) |
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.932939726 \approx L^{(2)}(E/K,1)/2! & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 7.941833 \cdot 0.655112 \cdot 2 } { {1^2 \cdot 2.645751} } \\ & \approx 3.932939726 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is semistable. There are 3 primes $\frak{p}$ of bad reduction.
| $\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
|---|---|---|---|---|---|---|---|---|
| \((-2a+3)\) | \(11\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
| \((2a+1)\) | \(11\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
| \((13)\) | \(169\) | \(2\) | \(I_{2}\) | Split multiplicative | \(-1\) | \(1\) | \(2\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .
Isogenies and isogeny class
This curve has no rational isogenies. Its isogeny class 20449.2-a consists of this curve only.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
| Base field | Curve |
|---|---|
| \(\Q\) | 143.a1 |
| \(\Q\) | 7007.d1 |