Learn more

Refine search


Results (12 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
10404.2-a1 10404.2-a Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.2865077850.286507785 2.3023013292.302301329 1.994525346 4626827946818 \frac{46268279}{46818} [1 \bigl[1 , 1 1 , 0 0 , 8 8 , 10] 10\bigr] y2+xy=x3+x2+8x+10{y}^2+{x}{y}={x}^{3}+{x}^{2}+8{x}+10
10404.2-a2 10404.2-a Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.1432538920.143253892 4.6046026584.604602658 1.994525346 1771561612 \frac{1771561}{612} [1 \bigl[1 , 1 1 , 0 0 , 2 -2 , 0] 0\bigr] y2+xy=x3+x22x{y}^2+{x}{y}={x}^{3}+{x}^{2}-2{x}
10404.2-b1 10404.2-b Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 5.2314713665.231471366 0.4158679340.415867934 2.192799889 11071118136251228691592 -\frac{1107111813625}{1228691592} [1 \bigl[1 , 0 0 , 1 1 , 216 -216 , 2062] 2062\bigr] y2+xy+y=x3216x+2062{y}^2+{x}{y}+{y}={x}^{3}-216{x}+2062
10404.2-b2 10404.2-b Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.7438237881.743823788 0.1386226440.138622644 2.192799889 6552159694763751001033261568 \frac{655215969476375}{1001033261568} [1 \bigl[1 , 0 0 , 1 1 , 1809 1809 , 37790] -37790\bigr] y2+xy+y=x3+1809x37790{y}^2+{x}{y}+{y}={x}^{3}+1809{x}-37790
10404.2-b3 10404.2-b Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 0.8719118940.871911894 0.2772452890.277245289 2.192799889 4675326751562511591221248 \frac{46753267515625}{11591221248} [1 \bigl[1 , 0 0 , 1 1 , 751 -751 , 6046] -6046\bigr] y2+xy+y=x3751x6046{y}^2+{x}{y}+{y}={x}^{3}-751{x}-6046
10404.2-b4 10404.2-b Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 2.6157356832.615735683 0.8317358690.831735869 2.192799889 1845026709625793152 \frac{1845026709625}{793152} [1 \bigl[1 , 0 0 , 1 1 , 256 -256 , 1550] 1550\bigr] y2+xy+y=x3256x+1550{y}^2+{x}{y}+{y}={x}^{3}-256{x}+1550
10404.2-c1 10404.2-c Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.7551225141.755122514 0.1837541470.183754147 7.801453798 491411892194497125563633938 -\frac{491411892194497}{125563633938} [1 \bigl[1 , 0 0 , 0 0 , 1644 -1644 , 30942] -30942\bigr] y2+xy=x31644x30942{y}^2+{x}{y}={x}^{3}-1644{x}-30942
10404.2-c2 10404.2-c Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 3.5102450283.510245028 0.3675082940.367508294 7.801453798 12762299154232927177028 \frac{1276229915423}{2927177028} [1 \bigl[1 , 0 0 , 0 0 , 226 226 , 2232] -2232\bigr] y2+xy=x3+226x2232{y}^2+{x}{y}={x}^{3}+226{x}-2232
10404.2-c3 10404.2-c Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 1.7551225141.755122514 0.7350165880.735016588 7.801453798 16393675881730338064 \frac{163936758817}{30338064} [1 \bigl[1 , 0 0 , 0 0 , 114 -114 , 396] -396\bigr] y2+xy=x3114x396{y}^2+{x}{y}={x}^{3}-114{x}-396
10404.2-c4 10404.2-c Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 0.8775612570.877561257 1.4700331771.470033177 7.801453798 4354703137352512 \frac{4354703137}{352512} [1 \bigl[1 , 0 0 , 0 0 , 34 -34 , 68] 68\bigr] y2+xy=x334x+68{y}^2+{x}{y}={x}^{3}-34{x}+68
10404.2-c5 10404.2-c Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.8775612570.877561257 0.3675082940.367508294 7.801453798 57661594161033727060804 \frac{576615941610337}{27060804} [1 \bigl[1 , 0 0 , 0 0 , 1734 -1734 , 27936] -27936\bigr] y2+xy=x31734x27936{y}^2+{x}{y}={x}^{3}-1734{x}-27936
10404.2-c6 10404.2-c Q(7)\Q(\sqrt{-7}) 2232172 2^{2} \cdot 3^{2} \cdot 17^{2} 11 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 1.7551225141.755122514 0.1837541470.183754147 7.801453798 23617390902588840975202 \frac{2361739090258884097}{5202} [1 \bigl[1 , 0 0 , 0 0 , 27744 -27744 , 1781010] -1781010\bigr] y2+xy=x327744x1781010{y}^2+{x}{y}={x}^{3}-27744{x}-1781010
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.