Properties

Label 2.0.4.1-52000.3-c4
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 52000 52000
CM no
Base change no
Q-curve no
Torsion order 2 2
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([1, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2+(i+1)xy=x3+(i+1)x2+(71i+231)x1214i522{y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-71i+231\right){x}-1214i-522
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([1,1]),K([0,0]),K([231,-71]),K([-522,-1214])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([1,1]),Polrev([0,0]),Polrev([231,-71]),Polrev([-522,-1214])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![1,1],K![0,0],K![231,-71],K![-522,-1214]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(172i+1:194i+154:1)\left(\frac{17}{2} i + 1 : -\frac{19}{4} i + \frac{15}{4} : 1\right)0022

Invariants

Conductor: N\frak{N} = (180i140)(180i-140) = (i+1)5(i2)2(2i+1)(3i2)(i+1)^{5}\cdot(-i-2)^{2}\cdot(2i+1)\cdot(-3i-2)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 52000 52000 = 25525132^{5}\cdot5^{2}\cdot5\cdot13
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 135000i430000135000i-430000
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (135000i430000)(135000i-430000) = (i+1)6(i2)8(2i+1)4(3i2)(i+1)^{6}\cdot(-i-2)^{8}\cdot(2i+1)^{4}\cdot(-3i-2)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 203125000000 203125000000 = 265854132^{6}\cdot5^{8}\cdot5^{4}\cdot13
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 160418065688125i+234134390248125 -\frac{16041806568}{8125} i + \frac{23413439024}{8125}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 1.75539284778371904727523794248764166292 1.75539284778371904727523794248764166292
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 8 8  =  22212\cdot2\cdot2\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 1.7553928477837190472752379424876416629 1.7553928477837190472752379424876416629
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

1.755392848L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/211.75539318222.0000001.755392848\begin{aligned}1.755392848 \approx L(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 1.755393 \cdot 1 \cdot 8 } { {2^2 \cdot 2.000000} } \\ & \approx 1.755392848 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 22 IIIIII Additive 1-1 55 66 00
(i2)(-i-2) 55 22 I2I_{2}^{*} Additive 11 22 88 22
(2i+1)(2i+1) 55 22 I4I_{4} Non-split multiplicative 11 11 44 44
(3i2)(-3i-2) 1313 11 I1I_{1} Non-split multiplicative 11 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 52000.3-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.