Generator i, with minimal polynomial
x2+1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
gp:K = nfinit(Polrev([1, 0, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
y2+(i+1)xy=x3+(i+1)x2+(−71i+231)x−1214i−522
sage:E = EllipticCurve([K([1,1]),K([1,1]),K([0,0]),K([231,-71]),K([-522,-1214])])
gp:E = ellinit([Polrev([1,1]),Polrev([1,1]),Polrev([0,0]),Polrev([231,-71]),Polrev([-522,-1214])], K);
magma:E := EllipticCurve([K![1,1],K![1,1],K![0,0],K![231,-71],K![-522,-1214]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z/2Z
P | h^(P) | Order |
(217i+1:−419i+415:1) | 0 | 2 |
Conductor: |
N |
= |
(180i−140) |
= |
(i+1)5⋅(−i−2)2⋅(2i+1)⋅(−3i−2) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
52000 |
= |
25⋅52⋅5⋅13 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
135000i−430000 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(135000i−430000) |
= |
(i+1)6⋅(−i−2)8⋅(2i+1)4⋅(−3i−2) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
203125000000 |
= |
26⋅58⋅54⋅13 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
−812516041806568i+812523413439024 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
0
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
0 |
Regulator:
|
Reg(E/K) |
= |
1
|
Néron-Tate Regulator:
|
RegNT(E/K) |
= |
1
|
Global period: |
Ω(E/K) | ≈ |
1.75539284778371904727523794248764166292 |
Tamagawa product: |
∏pcp | = |
8
= 2⋅2⋅2⋅1
|
Torsion order: |
#E(K)tor | = |
2 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 1.7553928477837190472752379424876416629 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
1.755392848≈L(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈22⋅2.0000001⋅1.755393⋅1⋅8≈1.755392848
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2 and 4.
Its isogeny class
52000.3-c
consists of curves linked by isogenies of
degrees dividing 4.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.