Generator i, with minimal polynomial
x2+1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
gp:K = nfinit(Polrev([1, 0, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
y2+xy+y=x3−x2−3x+3
sage:E = EllipticCurve([K([1,0]),K([-1,0]),K([1,0]),K([-3,0]),K([3,0])])
gp:E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([1,0]),Polrev([-3,0]),Polrev([3,0])], K);
magma:E := EllipticCurve([K![1,0],K![-1,0],K![1,0],K![-3,0],K![3,0]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z/7Z
Conductor: |
N |
= |
(13i+13) |
= |
(i+1)⋅(−3i−2)⋅(2i+3) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
338 |
= |
2⋅13⋅13 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−1664 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−1664) |
= |
(i+1)14⋅(−3i−2)⋅(2i+3) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
2768896 |
= |
214⋅13⋅13 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
−16642146689 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
0
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
0 |
Regulator:
|
Reg(E/K) |
= |
1
|
Néron-Tate Regulator:
|
RegNT(E/K) |
= |
1
|
Global period: |
Ω(E/K) | ≈ |
7.8417990398626970909740354626865420542 |
Tamagawa product: |
∏pcp | = |
14
= (2⋅7)⋅1⋅1
|
Torsion order: |
#E(K)tor | = |
7 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 1.1202570056946710129962907803837917220 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
1.120257006≈L(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈72⋅2.0000001⋅7.841799⋅1⋅14≈1.120257006
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is semistable.
There
are 3 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
7.
Its isogeny class
338.2-b
consists of curves linked by isogenies of
degree 7.