Properties

Label 2.0.4.1-338.2-b2
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 338 338
CM no
Base change yes
Q-curve yes
Torsion order 7 7
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([1, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2+xy+y=x3x23x+3{y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-3{x}+3
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,0]),K([-1,0]),K([1,0]),K([-3,0]),K([3,0])])
 
Copy content gp:E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([1,0]),Polrev([-3,0]),Polrev([3,0])], K);
 
Copy content magma:E := EllipticCurve([K![1,0],K![-1,0],K![1,0],K![-3,0],K![3,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

Z/7Z\Z/{7}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1:2:1)\left(-1 : -2 : 1\right)0077

Invariants

Conductor: N\frak{N} = (13i+13)(13i+13) = (i+1)(3i2)(2i+3)(i+1)\cdot(-3i-2)\cdot(2i+3)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 338 338 = 213132\cdot13\cdot13
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 1664-1664
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (1664)(-1664) = (i+1)14(3i2)(2i+3)(i+1)^{14}\cdot(-3i-2)\cdot(2i+3)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 2768896 2768896 = 21413132^{14}\cdot13\cdot13
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 21466891664 -\frac{2146689}{1664}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 7.8417990398626970909740354626865420542 7.8417990398626970909740354626865420542
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 14 14  =  (27)11( 2 \cdot 7 )\cdot1\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 77
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 1.1202570056946710129962907803837917220 1.1202570056946710129962907803837917220
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

1.120257006L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/217.841799114722.0000001.120257006\begin{aligned}1.120257006 \approx L(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 7.841799 \cdot 1 \cdot 14 } { {7^2 \cdot 2.000000} } \\ & \approx 1.120257006 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There are 3 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 1414 I14I_{14} Split multiplicative 1-1 11 1414 1414
(3i2)(-3i-2) 1313 11 I1I_{1} Non-split multiplicative 11 11 11 11
(2i+3)(2i+3) 1313 11 I1I_{1} Non-split multiplicative 11 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
77 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 7.
Its isogeny class 338.2-b consists of curves linked by isogenies of degree 7.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 26.b2
Q\Q 208.d2