Learn more

Refine search


Results (24 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
32400.1-CMc1 32400.1-CMc Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 Z/2Z\Z/2\Z 4-4 U(1)\mathrm{U}(1) 11 0.8848304450.884830445 0.884830445 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 54i+27 -54 i + 27 , 0] 0\bigr] y2=x3+(54i+27)x{y}^2={x}^{3}+\left(-54i+27\right){x}
32400.1-CMb1 32400.1-CMb Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 Z/2Z\Z/2\Z 4-4 U(1)\mathrm{U}(1) 11 0.6853867150.685386715 0.685386715 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 18i+99 -18 i + 99 , 0] 0\bigr] y2=x3+(18i+99)x{y}^2={x}^{3}+\left(-18i+99\right){x}
32400.1-CMa1 32400.1-CMa Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 Z/2Z\Z/2\Z 4-4 U(1)\mathrm{U}(1) 11 2.6544913352.654491335 2.654491335 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 6i+3 -6 i + 3 , 0] 0\bigr] y2=x3+(6i+3)x{y}^2={x}^{3}+\left(-6i+3\right){x}
32400.1-a1 32400.1-a Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1667126960.166712696 2.2051712852.205171285 2.941040409 1982612a626132 \frac{198261}{2} a - \frac{62613}{2} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 22i9 -22 i - 9 , 45i+20] -45 i + 20\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(22i9)x45i+20{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-22i-9\right){x}-45i+20
32400.1-a2 32400.1-a Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.5001380890.500138089 0.7350570950.735057095 2.941040409 866434a19714 -\frac{86643}{4} a - \frac{1971}{4} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 82i129 -82 i - 129 , 455i+540] 455 i + 540\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(82i129)x+455i+540{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-82i-129\right){x}+455i+540
32400.1-a3 32400.1-a Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 2.5006904472.500690447 0.1470114190.147011419 2.941040409 15363256a47709256 \frac{15363}{256} a - \frac{47709}{256} [i+1 \bigl[i + 1 , i i , 0 0 , 999i+411 999 i + 411 , 14428i+39825] 14428 i + 39825\bigr] y2+(i+1)xy=x3+ix2+(999i+411)x+14428i+39825{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(999i+411\right){x}+14428i+39825
32400.1-a4 32400.1-a Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.8335634820.833563482 0.4410342570.441034257 2.941040409 136701818a+199281338 -\frac{13670181}{8} a + \frac{19928133}{8} [i+1 \bigl[i + 1 , i i , 0 0 , 441i+831 -441 i + 831 , 8688i+7645] 8688 i + 7645\bigr] y2+(i+1)xy=x3+ix2+(441i+831)x+8688i+7645{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-441i+831\right){x}+8688i+7645
32400.1-b1 32400.1-b Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2709627680.270962768 1.083851073 2076466561 \frac{207646}{6561} [i+1 \bigl[i + 1 , i i , 0 0 , 141i+105 141 i + 105 , 6540i+1109] 6540 i + 1109\bigr] y2+(i+1)xy=x3+ix2+(141i+105)x+6540i+1109{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(141i+105\right){x}+6540i+1109
32400.1-b2 32400.1-b Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0838510731.083851073 1.083851073 20483 \frac{2048}{3} [0 \bigl[0 , 0 0 , 0 0 , 24i18 -24 i - 18 , 14i+77] -14 i + 77\bigr] y2=x3+(24i18)x14i+77{y}^2={x}^{3}+\left(-24i-18\right){x}-14i+77
32400.1-b3 32400.1-b Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 1.0838510731.083851073 1.083851073 351529 \frac{35152}{9} [i+1 \bigl[i + 1 , i i , 0 0 , 39i30 -39 i - 30 , 111i+2] -111 i + 2\bigr] y2+(i+1)xy=x3+ix2+(39i30)x111i+2{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-39i-30\right){x}-111i+2
32400.1-b4 32400.1-b Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5419255360.541925536 1.083851073 155606881 \frac{1556068}{81} [i+1 \bigl[i + 1 , i i , 0 0 , 219i165 -219 i - 165 , 1554i+407] 1554 i + 407\bigr] y2+(i+1)xy=x3+ix2+(219i165)x+1554i+407{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-219i-165\right){x}+1554i+407
32400.1-b5 32400.1-b Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5419255360.541925536 1.083851073 287562283 \frac{28756228}{3} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 580i435 -580 i - 435 , 7155i+1630] 7155 i + 1630\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(580i435)x+7155i+1630{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-580i-435\right){x}+7155i+1630
32400.1-b6 32400.1-b Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2709627680.270962768 1.083851073 30656171549 \frac{3065617154}{9} [i+1 \bigl[i + 1 , i i , 0 0 , 3459i2595 -3459 i - 2595 , 106368i+21305] 106368 i + 21305\bigr] y2+(i+1)xy=x3+ix2+(3459i2595)x+106368i+21305{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-3459i-2595\right){x}+106368i+21305
32400.1-c1 32400.1-c Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 Z/2Z\Z/2\Z 3-3 N(U(1))N(\mathrm{U}(1)) 0.4179466960.417946696 2.2844187962.284418796 3.819061154 0 0 [0 \bigl[0 , 0 0 , 0 0 , 0 0 , 2i11] 2 i - 11\bigr] y2=x3+2i11{y}^2={x}^{3}+2i-11
32400.1-c2 32400.1-c Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 Z/2Z\Z/2\Z 3-3 N(U(1))N(\mathrm{U}(1)) 1.2538400881.253840088 0.7614729320.761472932 3.819061154 0 0 [0 \bigl[0 , 0 0 , 0 0 , 0 0 , 54i+297] -54 i + 297\bigr] y2=x354i+297{y}^2={x}^{3}-54i+297
32400.1-c3 32400.1-c Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 Z/2Z\Z/2\Z 12-12 N(U(1))N(\mathrm{U}(1)) 2.5076801762.507680176 0.7614729320.761472932 3.819061154 54000 54000 [i+1 \bigl[i + 1 , i i , 0 0 , 135i102 -135 i - 102 , 766i+216] 766 i + 216\bigr] y2+(i+1)xy=x3+ix2+(135i102)x+766i+216{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-135i-102\right){x}+766i+216
32400.1-c4 32400.1-c Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 Z/2Z\Z/2\Z 12-12 N(U(1))N(\mathrm{U}(1)) 0.8358933920.835893392 2.2844187962.284418796 3.819061154 54000 54000 [i+1 \bigl[i + 1 , i i , 0 0 , 15i12 -15 i - 12 , 36i+2] -36 i + 2\bigr] y2+(i+1)xy=x3+ix2+(15i12)x36i+2{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-15i-12\right){x}-36i+2
32400.1-d1 32400.1-d Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.4933553710.493355371 1.973421484 103924a+1391324 \frac{1039}{24} a + \frac{13913}{24} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 64i123 -64 i - 123 , 629i502] 629 i - 502\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(64i123)x+629i502{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-64i-123\right){x}+629i-502
32400.1-d2 32400.1-d Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 0.4933553710.493355371 1.973421484 957521486a+776647486 \frac{957521}{486} a + \frac{776647}{486} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 26i+207 26 i + 207 , 765i+540] -765 i + 540\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(26i+207)x765i+540{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(26i+207\right){x}-765i+540
32400.1-e1 32400.1-e Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2324116700.232411670 1.1801775061.180177506 4.388592414 24013a+3433 -\frac{2401}{3} a + \frac{343}{3} [i+1 \bigl[i + 1 , i i , 0 0 , 21i+15 21 i + 15 , 48i+43] -48 i + 43\bigr] y2+(i+1)xy=x3+ix2+(21i+15)x48i+43{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(21i+15\right){x}-48i+43
32400.1-f1 32400.1-f Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.3869171740.386917174 0.7350570950.735057095 4.550499426 1982612a626132 \frac{198261}{2} a - \frac{62613}{2} [i+1 \bigl[i + 1 , i i , 0 0 , 189i75 -189 i - 75 , 1124i+351] -1124 i + 351\bigr] y2+(i+1)xy=x3+ix2+(189i75)x1124i+351{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-189i-75\right){x}-1124i+351
32400.1-f2 32400.1-f Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1289723910.128972391 2.2051712852.205171285 4.550499426 866434a19714 -\frac{86643}{4} a - \frac{1971}{4} [i+1 \bigl[i + 1 , i i , 0 0 , 9i15 -9 i - 15 , 12i+23] 12 i + 23\bigr] y2+(i+1)xy=x3+ix2+(9i15)x+12i+23{y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-9i-15\right){x}+12i+23
32400.1-f3 32400.1-f Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.6448619570.644861957 0.4410342570.441034257 4.550499426 15363256a47709256 \frac{15363}{256} a - \frac{47709}{256} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 110i+45 110 i + 45 , 549i+1438] 549 i + 1438\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(110i+45)x+549i+1438{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(110i+45\right){x}+549i+1438
32400.1-f4 32400.1-f Q(1)\Q(\sqrt{-1}) 243452 2^{4} \cdot 3^{4} \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 1.9345858711.934585871 0.1470114190.147011419 4.550499426 136701818a+199281338 -\frac{13670181}{8} a + \frac{19928133}{8} [i+1 \bigl[i + 1 , i i , i+1 i + 1 , 3970i+7485 -3970 i + 7485 , 227093i+202446] 227093 i + 202446\bigr] y2+(i+1)xy+(i+1)y=x3+ix2+(3970i+7485)x+227093i+202446{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-3970i+7485\right){x}+227093i+202446
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.