Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
32400.1-CMc1 |
32400.1-CMc |
$1$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{18} \cdot 5^{3} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{yes}$ |
$-4$ |
$\mathrm{U}(1)$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$0.884830445$ |
0.884830445 |
\( 1728 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -54 i + 27\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(-54i+27\right){x}$ |
32400.1-CMb1 |
32400.1-CMb |
$1$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{12} \cdot 5^{9} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{yes}$ |
$-4$ |
$\mathrm{U}(1)$ |
✓ |
|
|
✓ |
$5$ |
5Cs.4.1 |
$1$ |
\( 2^{2} \) |
$1$ |
$0.685386715$ |
0.685386715 |
\( 1728 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -18 i + 99\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(-18i+99\right){x}$ |
32400.1-CMa1 |
32400.1-CMa |
$1$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{12} \cdot 3^{6} \cdot 5^{3} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{yes}$ |
$-4$ |
$\mathrm{U}(1)$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$1$ |
$2.654491335$ |
2.654491335 |
\( 1728 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -6 i + 3\) , \( 0\bigr] \) |
${y}^2={x}^{3}+\left(-6i+3\right){x}$ |
32400.1-a1 |
32400.1-a |
$4$ |
$15$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{13} \cdot 3^{6} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B |
$1$ |
\( 2^{2} \) |
$0.166712696$ |
$2.205171285$ |
2.941040409 |
\( \frac{198261}{2} a - \frac{62613}{2} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -22 i - 9\) , \( -45 i + 20\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-22i-9\right){x}-45i+20$ |
32400.1-a2 |
32400.1-a |
$4$ |
$15$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{15} \cdot 3^{18} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B |
$1$ |
\( 2^{2} \) |
$0.500138089$ |
$0.735057095$ |
2.941040409 |
\( -\frac{86643}{4} a - \frac{1971}{4} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -82 i - 129\) , \( 455 i + 540\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-82i-129\right){x}+455i+540$ |
32400.1-a3 |
32400.1-a |
$4$ |
$15$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{27} \cdot 3^{18} \cdot 5^{10} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B |
$1$ |
\( 2^{2} \) |
$2.500690447$ |
$0.147011419$ |
2.941040409 |
\( \frac{15363}{256} a - \frac{47709}{256} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 999 i + 411\) , \( 14428 i + 39825\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(999i+411\right){x}+14428i+39825$ |
32400.1-a4 |
32400.1-a |
$4$ |
$15$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{17} \cdot 3^{6} \cdot 5^{10} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B |
$1$ |
\( 2^{2} \) |
$0.833563482$ |
$0.441034257$ |
2.941040409 |
\( -\frac{13670181}{8} a + \frac{19928133}{8} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -441 i + 831\) , \( 8688 i + 7645\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-441i+831\right){x}+8688i+7645$ |
32400.1-b1 |
32400.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{28} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.270962768$ |
1.083851073 |
\( \frac{207646}{6561} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 141 i + 105\) , \( 6540 i + 1109\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(141i+105\right){x}+6540i+1109$ |
32400.1-b2 |
32400.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{14} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.083851073$ |
1.083851073 |
\( \frac{2048}{3} \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( -24 i - 18\) , \( -14 i + 77\bigr] \) |
${y}^2={x}^{3}+\left(-24i-18\right){x}-14i+77$ |
32400.1-b3 |
32400.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{16} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$1.083851073$ |
1.083851073 |
\( \frac{35152}{9} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -39 i - 30\) , \( -111 i + 2\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-39i-30\right){x}-111i+2$ |
32400.1-b4 |
32400.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{20} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.541925536$ |
1.083851073 |
\( \frac{1556068}{81} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -219 i - 165\) , \( 1554 i + 407\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-219i-165\right){x}+1554i+407$ |
32400.1-b5 |
32400.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{14} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.541925536$ |
1.083851073 |
\( \frac{28756228}{3} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -580 i - 435\) , \( 7155 i + 1630\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-580i-435\right){x}+7155i+1630$ |
32400.1-b6 |
32400.1-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{10} \cdot 3^{16} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.270962768$ |
1.083851073 |
\( \frac{3065617154}{9} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -3459 i - 2595\) , \( 106368 i + 21305\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-3459i-2595\right){x}+106368i+21305$ |
32400.1-c1 |
32400.1-c |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.417946696$ |
$2.284418796$ |
3.819061154 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 2 i - 11\bigr] \) |
${y}^2={x}^{3}+2i-11$ |
32400.1-c2 |
32400.1-c |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{8} \cdot 3^{18} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-3$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.253840088$ |
$0.761472932$ |
3.819061154 |
\( 0 \) |
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -54 i + 297\bigr] \) |
${y}^2={x}^{3}-54i+297$ |
32400.1-c3 |
32400.1-c |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-12$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$2.507680176$ |
$0.761472932$ |
3.819061154 |
\( 54000 \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -135 i - 102\) , \( 766 i + 216\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-135i-102\right){x}+766i+216$ |
32400.1-c4 |
32400.1-c |
$4$ |
$6$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{6} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{potential}$ |
$-12$ |
$N(\mathrm{U}(1))$ |
✓ |
|
|
✓ |
|
|
$1$ |
\( 2^{2} \) |
$0.835893392$ |
$2.284418796$ |
3.819061154 |
\( 54000 \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -15 i - 12\) , \( -36 i + 2\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-15i-12\right){x}-36i+2$ |
32400.1-d1 |
32400.1-d |
$2$ |
$5$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{17} \cdot 3^{14} \cdot 5^{8} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.1 |
$1$ |
\( 2^{2} \) |
$1$ |
$0.493355371$ |
1.973421484 |
\( \frac{1039}{24} a + \frac{13913}{24} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -64 i - 123\) , \( 629 i - 502\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-64i-123\right){x}+629i-502$ |
32400.1-d2 |
32400.1-d |
$2$ |
$5$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{13} \cdot 3^{22} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
0 |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$5$ |
5B.4.2 |
$1$ |
\( 2^{2} \) |
$1$ |
$0.493355371$ |
1.973421484 |
\( \frac{957521}{486} a + \frac{776647}{486} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 26 i + 207\) , \( -765 i + 540\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(26i+207\right){x}-765i+540$ |
32400.1-e1 |
32400.1-e |
$1$ |
$1$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{11} \cdot 3^{14} \cdot 5^{4} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
|
$1$ |
\( 2^{3} \) |
$0.232411670$ |
$1.180177506$ |
4.388592414 |
\( -\frac{2401}{3} a + \frac{343}{3} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( 21 i + 15\) , \( -48 i + 43\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(21i+15\right){x}-48i+43$ |
32400.1-f1 |
32400.1-f |
$4$ |
$15$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{13} \cdot 3^{18} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B |
$1$ |
\( 2^{3} \) |
$0.386917174$ |
$0.735057095$ |
4.550499426 |
\( \frac{198261}{2} a - \frac{62613}{2} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -189 i - 75\) , \( -1124 i + 351\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-189i-75\right){x}-1124i+351$ |
32400.1-f2 |
32400.1-f |
$4$ |
$15$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{15} \cdot 3^{6} \cdot 5^{2} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B |
$1$ |
\( 2^{3} \) |
$0.128972391$ |
$2.205171285$ |
4.550499426 |
\( -\frac{86643}{4} a - \frac{1971}{4} \) |
\( \bigl[i + 1\) , \( i\) , \( 0\) , \( -9 i - 15\) , \( 12 i + 23\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-9i-15\right){x}+12i+23$ |
32400.1-f3 |
32400.1-f |
$4$ |
$15$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{27} \cdot 3^{6} \cdot 5^{10} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B |
$1$ |
\( 2^{3} \) |
$0.644861957$ |
$0.441034257$ |
4.550499426 |
\( \frac{15363}{256} a - \frac{47709}{256} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( 110 i + 45\) , \( 549 i + 1438\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(110i+45\right){x}+549i+1438$ |
32400.1-f4 |
32400.1-f |
$4$ |
$15$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
32400.1 |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \) |
\( 2^{17} \cdot 3^{18} \cdot 5^{10} \) |
$2.39775$ |
$(a+1), (-a-2), (3)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$3, 5$ |
3B, 5B |
$1$ |
\( 2^{3} \) |
$1.934585871$ |
$0.147011419$ |
4.550499426 |
\( -\frac{13670181}{8} a + \frac{19928133}{8} \) |
\( \bigl[i + 1\) , \( i\) , \( i + 1\) , \( -3970 i + 7485\) , \( 227093 i + 202446\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-3970i+7485\right){x}+227093i+202446$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.