32400.1-CMc1
32400.1-CMc
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 12 ⋅ 3 18 ⋅ 5 3 2^{12} \cdot 3^{18} \cdot 5^{3} 2 1 2 ⋅ 3 1 8 ⋅ 5 3
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
yes \textsf{yes} yes
− 4 -4 − 4
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
1 1 1
2 2 2^{2} 2 2
1 1 1
0.884830445 0.884830445 0 . 8 8 4 8 3 0 4 4 5
0.884830445
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 54 i + 27 -54 i + 27 − 5 4 i + 2 7 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + ( − 54 i + 27 ) x {y}^2={x}^{3}+\left(-54i+27\right){x} y 2 = x 3 + ( − 5 4 i + 2 7 ) x
32400.1-CMb1
32400.1-CMb
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 12 ⋅ 3 12 ⋅ 5 9 2^{12} \cdot 3^{12} \cdot 5^{9} 2 1 2 ⋅ 3 1 2 ⋅ 5 9
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
yes \textsf{yes} yes
− 4 -4 − 4
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
5 5 5
5Cs.4.1
1 1 1
2 2 2^{2} 2 2
1 1 1
0.685386715 0.685386715 0 . 6 8 5 3 8 6 7 1 5
0.685386715
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 18 i + 99 -18 i + 99 − 1 8 i + 9 9 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + ( − 18 i + 99 ) x {y}^2={x}^{3}+\left(-18i+99\right){x} y 2 = x 3 + ( − 1 8 i + 9 9 ) x
32400.1-CMa1
32400.1-CMa
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 12 ⋅ 3 6 ⋅ 5 3 2^{12} \cdot 3^{6} \cdot 5^{3} 2 1 2 ⋅ 3 6 ⋅ 5 3
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
yes \textsf{yes} yes
− 4 -4 − 4
U ( 1 ) \mathrm{U}(1) U ( 1 )
✓
✓
1 1 1
2 2 2^{2} 2 2
1 1 1
2.654491335 2.654491335 2 . 6 5 4 4 9 1 3 3 5
2.654491335
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 6 i + 3 -6 i + 3 − 6 i + 3 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + ( − 6 i + 3 ) x {y}^2={x}^{3}+\left(-6i+3\right){x} y 2 = x 3 + ( − 6 i + 3 ) x
32400.1-a1
32400.1-a
4 4 4
15 15 1 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 13 ⋅ 3 6 ⋅ 5 2 2^{13} \cdot 3^{6} \cdot 5^{2} 2 1 3 ⋅ 3 6 ⋅ 5 2
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 , 5 3, 5 3 , 5
3B , 5B
1 1 1
2 2 2^{2} 2 2
0.166712696 0.166712696 0 . 1 6 6 7 1 2 6 9 6
2.205171285 2.205171285 2 . 2 0 5 1 7 1 2 8 5
2.941040409
198261 2 a − 62613 2 \frac{198261}{2} a - \frac{62613}{2} 2 1 9 8 2 6 1 a − 2 6 2 6 1 3
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − 22 i − 9 -22 i - 9 − 2 2 i − 9 , − 45 i + 20 ] -45 i + 20\bigr] − 4 5 i + 2 0 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 22 i − 9 ) x − 45 i + 20 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-22i-9\right){x}-45i+20 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 2 2 i − 9 ) x − 4 5 i + 2 0
32400.1-a2
32400.1-a
4 4 4
15 15 1 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 15 ⋅ 3 18 ⋅ 5 2 2^{15} \cdot 3^{18} \cdot 5^{2} 2 1 5 ⋅ 3 1 8 ⋅ 5 2
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 , 5 3, 5 3 , 5
3B , 5B
1 1 1
2 2 2^{2} 2 2
0.500138089 0.500138089 0 . 5 0 0 1 3 8 0 8 9
0.735057095 0.735057095 0 . 7 3 5 0 5 7 0 9 5
2.941040409
− 86643 4 a − 1971 4 -\frac{86643}{4} a - \frac{1971}{4} − 4 8 6 6 4 3 a − 4 1 9 7 1
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − 82 i − 129 -82 i - 129 − 8 2 i − 1 2 9 , 455 i + 540 ] 455 i + 540\bigr] 4 5 5 i + 5 4 0 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 82 i − 129 ) x + 455 i + 540 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-82i-129\right){x}+455i+540 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 8 2 i − 1 2 9 ) x + 4 5 5 i + 5 4 0
32400.1-a3
32400.1-a
4 4 4
15 15 1 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 27 ⋅ 3 18 ⋅ 5 10 2^{27} \cdot 3^{18} \cdot 5^{10} 2 2 7 ⋅ 3 1 8 ⋅ 5 1 0
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 , 5 3, 5 3 , 5
3B , 5B
1 1 1
2 2 2^{2} 2 2
2.500690447 2.500690447 2 . 5 0 0 6 9 0 4 4 7
0.147011419 0.147011419 0 . 1 4 7 0 1 1 4 1 9
2.941040409
15363 256 a − 47709 256 \frac{15363}{256} a - \frac{47709}{256} 2 5 6 1 5 3 6 3 a − 2 5 6 4 7 7 0 9
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 999 i + 411 999 i + 411 9 9 9 i + 4 1 1 , 14428 i + 39825 ] 14428 i + 39825\bigr] 1 4 4 2 8 i + 3 9 8 2 5 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 999 i + 411 ) x + 14428 i + 39825 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(999i+411\right){x}+14428i+39825 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 9 9 9 i + 4 1 1 ) x + 1 4 4 2 8 i + 3 9 8 2 5
32400.1-a4
32400.1-a
4 4 4
15 15 1 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 17 ⋅ 3 6 ⋅ 5 10 2^{17} \cdot 3^{6} \cdot 5^{10} 2 1 7 ⋅ 3 6 ⋅ 5 1 0
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 , 5 3, 5 3 , 5
3B , 5B
1 1 1
2 2 2^{2} 2 2
0.833563482 0.833563482 0 . 8 3 3 5 6 3 4 8 2
0.441034257 0.441034257 0 . 4 4 1 0 3 4 2 5 7
2.941040409
− 13670181 8 a + 19928133 8 -\frac{13670181}{8} a + \frac{19928133}{8} − 8 1 3 6 7 0 1 8 1 a + 8 1 9 9 2 8 1 3 3
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 441 i + 831 -441 i + 831 − 4 4 1 i + 8 3 1 , 8688 i + 7645 ] 8688 i + 7645\bigr] 8 6 8 8 i + 7 6 4 5 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 441 i + 831 ) x + 8688 i + 7645 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-441i+831\right){x}+8688i+7645 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 4 4 1 i + 8 3 1 ) x + 8 6 8 8 i + 7 6 4 5
32400.1-b1
32400.1-b
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 10 ⋅ 3 28 ⋅ 5 6 2^{10} \cdot 3^{28} \cdot 5^{6} 2 1 0 ⋅ 3 2 8 ⋅ 5 6
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1 1 1
0.270962768 0.270962768 0 . 2 7 0 9 6 2 7 6 8
1.083851073
207646 6561 \frac{207646}{6561} 6 5 6 1 2 0 7 6 4 6
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 141 i + 105 141 i + 105 1 4 1 i + 1 0 5 , 6540 i + 1109 ] 6540 i + 1109\bigr] 6 5 4 0 i + 1 1 0 9 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 141 i + 105 ) x + 6540 i + 1109 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(141i+105\right){x}+6540i+1109 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 1 4 1 i + 1 0 5 ) x + 6 5 4 0 i + 1 1 0 9
32400.1-b2
32400.1-b
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 8 ⋅ 3 14 ⋅ 5 6 2^{8} \cdot 3^{14} \cdot 5^{6} 2 8 ⋅ 3 1 4 ⋅ 5 6
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 2 2^{2} 2 2
1 1 1
1.083851073 1.083851073 1 . 0 8 3 8 5 1 0 7 3
1.083851073
2048 3 \frac{2048}{3} 3 2 0 4 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 24 i − 18 -24 i - 18 − 2 4 i − 1 8 , − 14 i + 77 ] -14 i + 77\bigr] − 1 4 i + 7 7 ]
y 2 = x 3 + ( − 24 i − 18 ) x − 14 i + 77 {y}^2={x}^{3}+\left(-24i-18\right){x}-14i+77 y 2 = x 3 + ( − 2 4 i − 1 8 ) x − 1 4 i + 7 7
32400.1-b3
32400.1-b
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 4 ⋅ 3 16 ⋅ 5 6 2^{4} \cdot 3^{16} \cdot 5^{6} 2 4 ⋅ 3 1 6 ⋅ 5 6
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
1.083851073 1.083851073 1 . 0 8 3 8 5 1 0 7 3
1.083851073
35152 9 \frac{35152}{9} 9 3 5 1 5 2
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 39 i − 30 -39 i - 30 − 3 9 i − 3 0 , − 111 i + 2 ] -111 i + 2\bigr] − 1 1 1 i + 2 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 39 i − 30 ) x − 111 i + 2 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-39i-30\right){x}-111i+2 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 3 9 i − 3 0 ) x − 1 1 1 i + 2
32400.1-b4
32400.1-b
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 8 ⋅ 3 20 ⋅ 5 6 2^{8} \cdot 3^{20} \cdot 5^{6} 2 8 ⋅ 3 2 0 ⋅ 5 6
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
1 1 1
0.541925536 0.541925536 0 . 5 4 1 9 2 5 5 3 6
1.083851073
1556068 81 \frac{1556068}{81} 8 1 1 5 5 6 0 6 8
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 219 i − 165 -219 i - 165 − 2 1 9 i − 1 6 5 , 1554 i + 407 ] 1554 i + 407\bigr] 1 5 5 4 i + 4 0 7 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 219 i − 165 ) x + 1554 i + 407 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-219i-165\right){x}+1554i+407 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 2 1 9 i − 1 6 5 ) x + 1 5 5 4 i + 4 0 7
32400.1-b5
32400.1-b
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 8 ⋅ 3 14 ⋅ 5 6 2^{8} \cdot 3^{14} \cdot 5^{6} 2 8 ⋅ 3 1 4 ⋅ 5 6
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1 1 1
0.541925536 0.541925536 0 . 5 4 1 9 2 5 5 3 6
1.083851073
28756228 3 \frac{28756228}{3} 3 2 8 7 5 6 2 2 8
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − 580 i − 435 -580 i - 435 − 5 8 0 i − 4 3 5 , 7155 i + 1630 ] 7155 i + 1630\bigr] 7 1 5 5 i + 1 6 3 0 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 580 i − 435 ) x + 7155 i + 1630 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-580i-435\right){x}+7155i+1630 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 5 8 0 i − 4 3 5 ) x + 7 1 5 5 i + 1 6 3 0
32400.1-b6
32400.1-b
6 6 6
8 8 8
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 10 ⋅ 3 16 ⋅ 5 6 2^{10} \cdot 3^{16} \cdot 5^{6} 2 1 0 ⋅ 3 1 6 ⋅ 5 6
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
2 2 2
2B
1 1 1
2 4 2^{4} 2 4
1 1 1
0.270962768 0.270962768 0 . 2 7 0 9 6 2 7 6 8
1.083851073
3065617154 9 \frac{3065617154}{9} 9 3 0 6 5 6 1 7 1 5 4
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 3459 i − 2595 -3459 i - 2595 − 3 4 5 9 i − 2 5 9 5 , 106368 i + 21305 ] 106368 i + 21305\bigr] 1 0 6 3 6 8 i + 2 1 3 0 5 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 3459 i − 2595 ) x + 106368 i + 21305 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-3459i-2595\right){x}+106368i+21305 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 3 4 5 9 i − 2 5 9 5 ) x + 1 0 6 3 6 8 i + 2 1 3 0 5
32400.1-c1
32400.1-c
4 4 4
6 6 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 8 ⋅ 3 6 ⋅ 5 6 2^{8} \cdot 3^{6} \cdot 5^{6} 2 8 ⋅ 3 6 ⋅ 5 6
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 3 -3 − 3
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
0.417946696 0.417946696 0 . 4 1 7 9 4 6 6 9 6
2.284418796 2.284418796 2 . 2 8 4 4 1 8 7 9 6
3.819061154
0 0 0
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 0 0 0 , 2 i − 11 ] 2 i - 11\bigr] 2 i − 1 1 ]
y 2 = x 3 + 2 i − 11 {y}^2={x}^{3}+2i-11 y 2 = x 3 + 2 i − 1 1
32400.1-c2
32400.1-c
4 4 4
6 6 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 8 ⋅ 3 18 ⋅ 5 6 2^{8} \cdot 3^{18} \cdot 5^{6} 2 8 ⋅ 3 1 8 ⋅ 5 6
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 3 -3 − 3
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
2 2 2
2B
1 1 1
2 3 2^{3} 2 3
1.253840088 1.253840088 1 . 2 5 3 8 4 0 0 8 8
0.761472932 0.761472932 0 . 7 6 1 4 7 2 9 3 2
3.819061154
0 0 0
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 0 0 0 , − 54 i + 297 ] -54 i + 297\bigr] − 5 4 i + 2 9 7 ]
y 2 = x 3 − 54 i + 297 {y}^2={x}^{3}-54i+297 y 2 = x 3 − 5 4 i + 2 9 7
32400.1-c3
32400.1-c
4 4 4
6 6 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 4 ⋅ 3 18 ⋅ 5 6 2^{4} \cdot 3^{18} \cdot 5^{6} 2 4 ⋅ 3 1 8 ⋅ 5 6
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 12 -12 − 1 2
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
1 1 1
2 2 2^{2} 2 2
2.507680176 2.507680176 2 . 5 0 7 6 8 0 1 7 6
0.761472932 0.761472932 0 . 7 6 1 4 7 2 9 3 2
3.819061154
54000 54000 5 4 0 0 0
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 135 i − 102 -135 i - 102 − 1 3 5 i − 1 0 2 , 766 i + 216 ] 766 i + 216\bigr] 7 6 6 i + 2 1 6 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 135 i − 102 ) x + 766 i + 216 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-135i-102\right){x}+766i+216 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 1 3 5 i − 1 0 2 ) x + 7 6 6 i + 2 1 6
32400.1-c4
32400.1-c
4 4 4
6 6 6
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 4 ⋅ 3 6 ⋅ 5 6 2^{4} \cdot 3^{6} \cdot 5^{6} 2 4 ⋅ 3 6 ⋅ 5 6
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
Z / 2 Z \Z/2\Z Z / 2 Z
potential \textsf{potential} potential
− 12 -12 − 1 2
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
1 1 1
2 2 2^{2} 2 2
0.835893392 0.835893392 0 . 8 3 5 8 9 3 3 9 2
2.284418796 2.284418796 2 . 2 8 4 4 1 8 7 9 6
3.819061154
54000 54000 5 4 0 0 0
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 15 i − 12 -15 i - 12 − 1 5 i − 1 2 , − 36 i + 2 ] -36 i + 2\bigr] − 3 6 i + 2 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 15 i − 12 ) x − 36 i + 2 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-15i-12\right){x}-36i+2 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 1 5 i − 1 2 ) x − 3 6 i + 2
32400.1-d1
32400.1-d
2 2 2
5 5 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 17 ⋅ 3 14 ⋅ 5 8 2^{17} \cdot 3^{14} \cdot 5^{8} 2 1 7 ⋅ 3 1 4 ⋅ 5 8
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
5 5 5
5B.4.1
1 1 1
2 2 2^{2} 2 2
1 1 1
0.493355371 0.493355371 0 . 4 9 3 3 5 5 3 7 1
1.973421484
1039 24 a + 13913 24 \frac{1039}{24} a + \frac{13913}{24} 2 4 1 0 3 9 a + 2 4 1 3 9 1 3
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − 64 i − 123 -64 i - 123 − 6 4 i − 1 2 3 , 629 i − 502 ] 629 i - 502\bigr] 6 2 9 i − 5 0 2 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 64 i − 123 ) x + 629 i − 502 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-64i-123\right){x}+629i-502 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 6 4 i − 1 2 3 ) x + 6 2 9 i − 5 0 2
32400.1-d2
32400.1-d
2 2 2
5 5 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 13 ⋅ 3 22 ⋅ 5 4 2^{13} \cdot 3^{22} \cdot 5^{4} 2 1 3 ⋅ 3 2 2 ⋅ 5 4
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
5 5 5
5B.4.2
1 1 1
2 2 2^{2} 2 2
1 1 1
0.493355371 0.493355371 0 . 4 9 3 3 5 5 3 7 1
1.973421484
957521 486 a + 776647 486 \frac{957521}{486} a + \frac{776647}{486} 4 8 6 9 5 7 5 2 1 a + 4 8 6 7 7 6 6 4 7
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , 26 i + 207 26 i + 207 2 6 i + 2 0 7 , − 765 i + 540 ] -765 i + 540\bigr] − 7 6 5 i + 5 4 0 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( 26 i + 207 ) x − 765 i + 540 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(26i+207\right){x}-765i+540 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( 2 6 i + 2 0 7 ) x − 7 6 5 i + 5 4 0
32400.1-e1
32400.1-e
1 1 1
1 1 1
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 11 ⋅ 3 14 ⋅ 5 4 2^{11} \cdot 3^{14} \cdot 5^{4} 2 1 1 ⋅ 3 1 4 ⋅ 5 4
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
1 1 1
2 3 2^{3} 2 3
0.232411670 0.232411670 0 . 2 3 2 4 1 1 6 7 0
1.180177506 1.180177506 1 . 1 8 0 1 7 7 5 0 6
4.388592414
− 2401 3 a + 343 3 -\frac{2401}{3} a + \frac{343}{3} − 3 2 4 0 1 a + 3 3 4 3
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , 21 i + 15 21 i + 15 2 1 i + 1 5 , − 48 i + 43 ] -48 i + 43\bigr] − 4 8 i + 4 3 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 21 i + 15 ) x − 48 i + 43 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(21i+15\right){x}-48i+43 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( 2 1 i + 1 5 ) x − 4 8 i + 4 3
32400.1-f1
32400.1-f
4 4 4
15 15 1 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 13 ⋅ 3 18 ⋅ 5 2 2^{13} \cdot 3^{18} \cdot 5^{2} 2 1 3 ⋅ 3 1 8 ⋅ 5 2
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 , 5 3, 5 3 , 5
3B , 5B
1 1 1
2 3 2^{3} 2 3
0.386917174 0.386917174 0 . 3 8 6 9 1 7 1 7 4
0.735057095 0.735057095 0 . 7 3 5 0 5 7 0 9 5
4.550499426
198261 2 a − 62613 2 \frac{198261}{2} a - \frac{62613}{2} 2 1 9 8 2 6 1 a − 2 6 2 6 1 3
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 189 i − 75 -189 i - 75 − 1 8 9 i − 7 5 , − 1124 i + 351 ] -1124 i + 351\bigr] − 1 1 2 4 i + 3 5 1 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 189 i − 75 ) x − 1124 i + 351 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-189i-75\right){x}-1124i+351 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 1 8 9 i − 7 5 ) x − 1 1 2 4 i + 3 5 1
32400.1-f2
32400.1-f
4 4 4
15 15 1 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 15 ⋅ 3 6 ⋅ 5 2 2^{15} \cdot 3^{6} \cdot 5^{2} 2 1 5 ⋅ 3 6 ⋅ 5 2
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 , 5 3, 5 3 , 5
3B , 5B
1 1 1
2 3 2^{3} 2 3
0.128972391 0.128972391 0 . 1 2 8 9 7 2 3 9 1
2.205171285 2.205171285 2 . 2 0 5 1 7 1 2 8 5
4.550499426
− 86643 4 a − 1971 4 -\frac{86643}{4} a - \frac{1971}{4} − 4 8 6 6 4 3 a − 4 1 9 7 1
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , 0 0 0 , − 9 i − 15 -9 i - 15 − 9 i − 1 5 , 12 i + 23 ] 12 i + 23\bigr] 1 2 i + 2 3 ]
y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 9 i − 15 ) x + 12 i + 23 {y}^2+\left(i+1\right){x}{y}={x}^{3}+i{x}^{2}+\left(-9i-15\right){x}+12i+23 y 2 + ( i + 1 ) x y = x 3 + i x 2 + ( − 9 i − 1 5 ) x + 1 2 i + 2 3
32400.1-f3
32400.1-f
4 4 4
15 15 1 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 27 ⋅ 3 6 ⋅ 5 10 2^{27} \cdot 3^{6} \cdot 5^{10} 2 2 7 ⋅ 3 6 ⋅ 5 1 0
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 , 5 3, 5 3 , 5
3B , 5B
1 1 1
2 3 2^{3} 2 3
0.644861957 0.644861957 0 . 6 4 4 8 6 1 9 5 7
0.441034257 0.441034257 0 . 4 4 1 0 3 4 2 5 7
4.550499426
15363 256 a − 47709 256 \frac{15363}{256} a - \frac{47709}{256} 2 5 6 1 5 3 6 3 a − 2 5 6 4 7 7 0 9
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , 110 i + 45 110 i + 45 1 1 0 i + 4 5 , 549 i + 1438 ] 549 i + 1438\bigr] 5 4 9 i + 1 4 3 8 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( 110 i + 45 ) x + 549 i + 1438 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(110i+45\right){x}+549i+1438 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( 1 1 0 i + 4 5 ) x + 5 4 9 i + 1 4 3 8
32400.1-f4
32400.1-f
4 4 4
15 15 1 5
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
32400.1
2 4 ⋅ 3 4 ⋅ 5 2 2^{4} \cdot 3^{4} \cdot 5^{2} 2 4 ⋅ 3 4 ⋅ 5 2
2 17 ⋅ 3 18 ⋅ 5 10 2^{17} \cdot 3^{18} \cdot 5^{10} 2 1 7 ⋅ 3 1 8 ⋅ 5 1 0
2.39775 2.39775 2 . 3 9 7 7 5
( a + 1 ) , ( − a − 2 ) , ( 3 ) (a+1), (-a-2), (3) ( a + 1 ) , ( − a − 2 ) , ( 3 )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
3 , 5 3, 5 3 , 5
3B , 5B
1 1 1
2 3 2^{3} 2 3
1.934585871 1.934585871 1 . 9 3 4 5 8 5 8 7 1
0.147011419 0.147011419 0 . 1 4 7 0 1 1 4 1 9
4.550499426
− 13670181 8 a + 19928133 8 -\frac{13670181}{8} a + \frac{19928133}{8} − 8 1 3 6 7 0 1 8 1 a + 8 1 9 9 2 8 1 3 3
[ i + 1 \bigl[i + 1 [ i + 1 , i i i , i + 1 i + 1 i + 1 , − 3970 i + 7485 -3970 i + 7485 − 3 9 7 0 i + 7 4 8 5 , 227093 i + 202446 ] 227093 i + 202446\bigr] 2 2 7 0 9 3 i + 2 0 2 4 4 6 ]
y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 3970 i + 7485 ) x + 227093 i + 202446 {y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+i{x}^{2}+\left(-3970i+7485\right){x}+227093i+202446 y 2 + ( i + 1 ) x y + ( i + 1 ) y = x 3 + i x 2 + ( − 3 9 7 0 i + 7 4 8 5 ) x + 2 2 7 0 9 3 i + 2 0 2 4 4 6