Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(1 : 4 i : 1\right)$ | $0.19504299139731134188863634214100086214$ | $\infty$ |
$\left(-9 i - 8 : -5 i + 36 : 1\right)$ | $1.2693578013101795258881410993022498294$ | $\infty$ |
$\left(4 : -2 i : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((99i+99)\) | = | \((i+1)\cdot(3)^{2}\cdot(11)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 19602 \) | = | \(2\cdot9^{2}\cdot121\) |
| |||||
Discriminant: | $\Delta$ | = | $384912$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((384912)\) | = | \((i+1)^{8}\cdot(3)^{7}\cdot(11)\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 148157247744 \) | = | \(2^{8}\cdot9^{7}\cdot121\) |
| |||||
j-invariant: | $j$ | = | \( \frac{912673}{528} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 2 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(2\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.20953757422783971873331868468541248243 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.838150296911358874933274738741649929720 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 3.2243682987764408419753792646461335762 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 8 \) = \(2\cdot2^{2}\cdot1\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.7025052469710469946715675404931538441 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}2.702505247 \approx L^{(2)}(E/K,1)/2! & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 3.224368 \cdot 0.838150 \cdot 8 } { {2^2 \cdot 2.000000} } \\ & \approx 2.702505247 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((i+1)\) | \(2\) | \(2\) | \(I_{8}\) | Non-split multiplicative | \(1\) | \(1\) | \(8\) | \(8\) |
\((3)\) | \(9\) | \(4\) | \(I_{1}^{*}\) | Additive | \(1\) | \(2\) | \(7\) | \(1\) |
\((11)\) | \(121\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
19602.1-a
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 198.a4 |
\(\Q\) | 1584.f4 |