Properties

Base field \(\Q(\sqrt{-1}) \)
Label 2.0.4.1-194.1-b
Conductor 194.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{-1}) \)

Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).

Elliptic curves in class 194.1-b over \(\Q(\sqrt{-1}) \)

Isogeny class 194.1-b contains 2 curves linked by isogenies of degree 7.

Curve label Weierstrass Coefficients
194.1-b1 \( \bigl[i\) , \( i\) , \( i\) , \( 24 i - 35\) , \( -180 i - 19\bigr] \)
194.1-b2 \( \bigl[1\) , \( -i\) , \( 1\) , \( -i - 1\) , \( -1\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph