Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(\frac{10754}{169} i + \frac{3157}{169} : \frac{336886}{2197} i + \frac{1601515}{2197} : 1\right)$ | $3.0639214277107162095746228591839998603$ | $\infty$ |
$\left(-\frac{101}{2} i - 19 : \frac{137}{4} i - \frac{65}{4} : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((120i+60)\) | = | \((i+1)^{4}\cdot(-i-2)\cdot(2i+1)^{2}\cdot(3)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 18000 \) | = | \(2^{4}\cdot5\cdot5^{2}\cdot9\) |
| |||||
Discriminant: | $\Delta$ | = | $-110649240000i+206611680000$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-110649240000i+206611680000)\) | = | \((i+1)^{12}\cdot(-i-2)^{4}\cdot(2i+1)^{22}\cdot(3)\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 54931640625000000000000 \) | = | \(2^{12}\cdot5^{4}\cdot5^{22}\cdot9\) |
| |||||
j-invariant: | $j$ | = | \( \frac{117751185817608007}{457763671875} i - \frac{2360548126387992}{152587890625} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 3.0639214277107162095746228591839998603 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 6.1278428554214324191492457183679997206 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 0.249959050341274717676838608233036868420 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 16 \) = \(2\cdot2\cdot2^{2}\cdot1\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.0634195615634128751634583245876357101 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.063419562 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.249959 \cdot 6.127843 \cdot 16 } { {2^2 \cdot 2.000000} } \\ & \approx 3.063419562 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((i+1)\) | \(2\) | \(2\) | \(I_{4}^{*}\) | Additive | \(1\) | \(4\) | \(12\) | \(0\) |
\((-i-2)\) | \(5\) | \(2\) | \(I_{4}\) | Non-split multiplicative | \(1\) | \(1\) | \(4\) | \(4\) |
\((2i+1)\) | \(5\) | \(4\) | \(I_{16}^{*}\) | Additive | \(1\) | \(2\) | \(22\) | \(16\) |
\((3)\) | \(9\) | \(1\) | \(I_{1}\) | Non-split multiplicative | \(1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4, 8 and 16.
Its isogeny class
18000.3-a
consists of curves linked by isogenies of
degrees dividing 16.
Base change
This elliptic curve is a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.