Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
18000.3-a1 |
18000.3-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{26} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$3.063921427$ |
$0.124979525$ |
3.063419561 |
\( -\frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) |
\( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -7581 i + 3060\) , \( 63243 i - 277817\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-7581i+3060\right){x}+63243i-277817$ |
18000.3-a2 |
18000.3-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{26} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$3.063921427$ |
$0.124979525$ |
3.063419561 |
\( \frac{117751185817608007}{457763671875} a - \frac{2360548126387992}{152587890625} \) |
\( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -5061 i + 6420\) , \( 156987 i + 237775\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-5061i+6420\right){x}+156987i+237775$ |
18000.3-a3 |
18000.3-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{12} \cdot 3^{32} \cdot 5^{8} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$3.063921427$ |
$0.124979525$ |
3.063419561 |
\( -\frac{147281603041}{215233605} \) |
\( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( 1759 i - 1320\) , \( 72583 i - 13197\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(1759i-1320\right){x}+72583i-13197$ |
18000.3-a4 |
18000.3-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{8} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.191495089$ |
$1.999672402$ |
3.063419561 |
\( -\frac{1}{15} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( i + 1\) , \( -i\) , \( 16 i - 3\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+1\right){x}^{2}-i{x}+16i-3$ |
18000.3-a5 |
18000.3-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{22} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1.531960713$ |
$0.249959050$ |
3.063419561 |
\( \frac{4733169839}{3515625} \) |
\( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -561 i + 420\) , \( 3987 i - 725\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-561i+420\right){x}+3987i-725$ |
18000.3-a6 |
18000.3-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{14} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.765980356$ |
$0.499918100$ |
3.063419561 |
\( \frac{111284641}{50625} \) |
\( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( 159 i - 120\) , \( 423 i - 77\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(159i-120\right){x}+423i-77$ |
18000.3-a7 |
18000.3-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{12} \cdot 3^{4} \cdot 5^{10} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$0.382990178$ |
$0.999836201$ |
3.063419561 |
\( \frac{13997521}{225} \) |
\( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( 79 i - 60\) , \( -413 i + 75\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(79i-60\right){x}-413i+75$ |
18000.3-a8 |
18000.3-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{12} \cdot 3^{16} \cdot 5^{10} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{6} \) |
$1.531960713$ |
$0.249959050$ |
3.063419561 |
\( \frac{272223782641}{164025} \) |
\( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( 2159 i - 1620\) , \( 52123 i - 9477\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(2159i-1620\right){x}+52123i-9477$ |
18000.3-a9 |
18000.3-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{12} \cdot 3^{2} \cdot 5^{8} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$0.765980356$ |
$0.499918100$ |
3.063419561 |
\( \frac{56667352321}{15} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( i + 1\) , \( 1279 i - 960\) , \( 24832 i - 4515\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(1279i-960\right){x}+24832i-4515$ |
18000.3-a10 |
18000.3-a |
$10$ |
$16$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{12} \cdot 3^{8} \cdot 5^{8} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$3.063921427$ |
$0.124979525$ |
3.063419561 |
\( \frac{1114544804970241}{405} \) |
\( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( 34559 i - 25920\) , \( 3384463 i - 615357\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(34559i-25920\right){x}+3384463i-615357$ |
18000.3-b1 |
18000.3-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{22} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.342470585$ |
1.369882343 |
\( -\frac{27995042}{1171875} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 80 i - 60\) , \( 3300 i - 600\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(80i-60\right){x}+3300i-600$ |
18000.3-b2 |
18000.3-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{8} \cdot 3^{16} \cdot 5^{8} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.684941171$ |
1.369882343 |
\( \frac{54607676}{32805} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( -80 i + 60\) , \( -110 i + 20\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(-80i+60\right){x}-110i+20$ |
18000.3-b3 |
18000.3-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{10} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{4} \) |
$1$ |
$1.369882343$ |
1.369882343 |
\( \frac{3631696}{2025} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 20 i - 15\) , \( 0\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(20i-15\right){x}$ |
18000.3-b4 |
18000.3-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{14} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.684941171$ |
1.369882343 |
\( \frac{868327204}{5625} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 200 i - 150\) , \( 1584 i - 288\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(200i-150\right){x}+1584i-288$ |
18000.3-b5 |
18000.3-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{8} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.369882343$ |
1.369882343 |
\( \frac{24918016}{45} \) |
\( \bigl[0\) , \( -i + 1\) , \( 0\) , \( -62 i + 46\) , \( -82 i - 259\bigr] \) |
${y}^2={x}^{3}+\left(-i+1\right){x}^{2}+\left(-62i+46\right){x}-82i-259$ |
18000.3-b6 |
18000.3-b |
$6$ |
$8$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{10} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.342470585$ |
1.369882343 |
\( \frac{1770025017602}{75} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 3200 i - 2400\) , \( 97284 i - 17688\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(3200i-2400\right){x}+97284i-17688$ |
18000.3-c1 |
18000.3-c |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{12} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.196457752$ |
1.196457752 |
\( -\frac{845824}{1125} a + \frac{151552}{125} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 2 i - 31\) , \( -31 i + 33\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(2i-31\right){x}-31i+33$ |
18000.3-c2 |
18000.3-c |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{15} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$1.196457752$ |
1.196457752 |
\( \frac{50708768}{46875} a + \frac{88214224}{46875} \) |
\( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -8 i - 34\) , \( 20 i + 31\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-8i-34\right){x}+20i+31$ |
18000.3-d1 |
18000.3-d |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{5} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$0.436583196$ |
$3.557372990$ |
3.106178544 |
\( \frac{5972768}{75} a - \frac{5804176}{75} \) |
\( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -8 i - 4\) , \( 5 i + 1\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-8i-4\right){x}+5i+1$ |
18000.3-d2 |
18000.3-d |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{4} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$0.218291598$ |
$3.557372990$ |
3.106178544 |
\( \frac{4096}{45} a + \frac{4096}{15} \) |
\( \bigl[0\) , \( -i\) , \( 0\) , \( 2 i - 1\) , \( -i + 3\bigr] \) |
${y}^2={x}^{3}-i{x}^{2}+\left(2i-1\right){x}-i+3$ |
18000.3-e1 |
18000.3-e |
$4$ |
$10$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{17} \cdot 3^{4} \cdot 5^{19} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.4.1 |
$1$ |
\( 2^{5} \) |
$0.821659235$ |
$0.242346075$ |
3.186014263 |
\( -\frac{1885562257009}{234375000} a - \frac{12665379878711}{703125000} \) |
\( \bigl[i + 1\) , \( 0\) , \( 0\) , \( -643 i + 1203\) , \( 14912 i + 13889\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-643i+1203\right){x}+14912i+13889$ |
18000.3-e2 |
18000.3-e |
$4$ |
$10$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{22} \cdot 3^{2} \cdot 5^{14} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.4.1 |
$1$ |
\( 2^{3} \) |
$1.643318471$ |
$0.484692151$ |
3.186014263 |
\( \frac{405178123}{300000} a - \frac{1228303}{25000} \) |
\( \bigl[i + 1\) , \( 0\) , \( 0\) , \( 77 i + 163\) , \( -512 i + 1057\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(77i+163\right){x}-512i+1057$ |
18000.3-e3 |
18000.3-e |
$4$ |
$10$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{13} \cdot 3^{20} \cdot 5^{11} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.4.2 |
$1$ |
\( 2^{5} \cdot 5 \) |
$0.164331847$ |
$0.242346075$ |
3.186014263 |
\( \frac{27430609}{984150} a + \frac{26476711}{2952450} \) |
\( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( -214 i + 26\) , \( -2944 i - 8668\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-214i+26\right){x}-2944i-8668$ |
18000.3-e4 |
18000.3-e |
$4$ |
$10$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{14} \cdot 3^{10} \cdot 5^{10} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2, 5$ |
2B, 5B.4.2 |
$1$ |
\( 2^{3} \cdot 5 \) |
$0.328663694$ |
$0.484692151$ |
3.186014263 |
\( -\frac{201070037}{2430} a + \frac{41050754}{405} \) |
\( \bigl[i + 1\) , \( i - 1\) , \( 0\) , \( -394 i + 286\) , \( -360 i - 3956\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(i-1\right){x}^{2}+\left(-394i+286\right){x}-360i-3956$ |
18000.3-f1 |
18000.3-f |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{8} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2 \) |
$1.122110181$ |
$3.114025978$ |
3.494280255 |
\( \frac{21296}{15} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( -4 i + 3\) , \( 0\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(-4i+3\right){x}$ |
18000.3-f2 |
18000.3-f |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{10} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$0.561055090$ |
$1.557012989$ |
3.494280255 |
\( \frac{470596}{225} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 16 i - 12\) , \( 22 i - 4\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(16i-12\right){x}+22i-4$ |
18000.3-f3 |
18000.3-f |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{14} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \) |
$0.280527545$ |
$0.778506494$ |
3.494280255 |
\( \frac{136835858}{1875} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 136 i - 102\) , \( -770 i + 140\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(136i-102\right){x}-770i+140$ |
18000.3-f4 |
18000.3-f |
$4$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{8} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \) |
$1.122110181$ |
$0.778506494$ |
3.494280255 |
\( \frac{546718898}{405} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 216 i - 162\) , \( 1782 i - 324\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(216i-162\right){x}+1782i-324$ |
18000.3-g1 |
18000.3-g |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{36} \cdot 3^{2} \cdot 5^{12} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.289412073$ |
1.736472441 |
\( -\frac{273359449}{1536000} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 216 i - 162\) , \( 5610 i - 1020\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(216i-162\right){x}+5610i-1020$ |
18000.3-g2 |
18000.3-g |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{20} \cdot 3^{6} \cdot 5^{8} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{3} \) |
$1$ |
$0.868236220$ |
1.736472441 |
\( \frac{357911}{2160} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( -24 i + 18\) , \( -198 i + 36\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(-24i+18\right){x}-198i+36$ |
18000.3-g3 |
18000.3-g |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{30} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \cdot 3 \) |
$1$ |
$0.072353018$ |
1.736472441 |
\( \frac{10316097499609}{5859375000} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 7256 i - 5442\) , \( 47850 i - 8700\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(7256i-5442\right){x}+47850i-8700$ |
18000.3-g4 |
18000.3-g |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{14} \cdot 3^{24} \cdot 5^{8} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$4$ |
\( 2^{3} \) |
$1$ |
$0.217059055$ |
1.736472441 |
\( \frac{35578826569}{5314410} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 1096 i - 822\) , \( 17050 i - 3100\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(1096i-822\right){x}+17050i-3100$ |
18000.3-g5 |
18000.3-g |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{16} \cdot 3^{12} \cdot 5^{10} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.434118110$ |
1.736472441 |
\( \frac{702595369}{72900} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 296 i - 222\) , \( -2310 i + 420\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(296i-222\right){x}-2310i+420$ |
18000.3-g6 |
18000.3-g |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{24} \cdot 3^{4} \cdot 5^{18} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2Cs, 3B |
$1$ |
\( 2^{6} \cdot 3 \) |
$1$ |
$0.144706036$ |
1.736472441 |
\( \frac{4102915888729}{9000000} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 5336 i - 4002\) , \( 208362 i - 37884\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(5336i-4002\right){x}+208362i-37884$ |
18000.3-g7 |
18000.3-g |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{14} \cdot 3^{6} \cdot 5^{14} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$1$ |
\( 2^{5} \) |
$1$ |
$0.217059055$ |
1.736472441 |
\( \frac{2656166199049}{33750} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 4616 i - 3462\) , \( -163878 i + 29796\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(4616i-3462\right){x}-163878i+29796$ |
18000.3-g8 |
18000.3-g |
$8$ |
$12$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{18} \cdot 3^{8} \cdot 5^{12} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
$2, 3$ |
2B, 3B |
$4$ |
\( 2^{3} \cdot 3 \) |
$1$ |
$0.072353018$ |
1.736472441 |
\( \frac{16778985534208729}{81000} \) |
\( \bigl[i + 1\) , \( -i + 1\) , \( 0\) , \( 85336 i - 64002\) , \( 13232362 i - 2405884\bigr] \) |
${y}^2+\left(i+1\right){x}{y}={x}^{3}+\left(-i+1\right){x}^{2}+\left(85336i-64002\right){x}+13232362i-2405884$ |
18000.3-h1 |
18000.3-h |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{11} \cdot 3^{4} \cdot 5^{9} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{5} \cdot 3 \) |
$0.052342536$ |
$1.407519653$ |
3.536311135 |
\( \frac{56413279}{15625} a - \frac{596671627}{140625} \) |
\( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( -27 i + 14\) , \( 91\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(-27i+14\right){x}+91$ |
18000.3-h2 |
18000.3-h |
$2$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
$2$ |
$[0, 1]$ |
18000.3 |
\( 2^{4} \cdot 3^{2} \cdot 5^{3} \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{6} \) |
$2.07008$ |
$(a+1), (-a-2), (2a+1), (3)$ |
$1$ |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
$2$ |
2B |
$1$ |
\( 2^{3} \cdot 3 \) |
$0.104685072$ |
$2.815039306$ |
3.536311135 |
\( -\frac{114374}{375} a - \frac{171144}{125} \) |
\( \bigl[i + 1\) , \( i + 1\) , \( i + 1\) , \( 3 i + 4\) , \( -2 i + 5\bigr] \) |
${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(i+1\right){x}^{2}+\left(3i+4\right){x}-2i+5$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.