Properties

Label 2.0.4.1-18000.2-g2
Base field Q(1)\Q(\sqrt{-1})
Conductor norm 18000 18000
CM no
Base change no
Q-curve yes
Torsion order 4 4
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(1)\Q(\sqrt{-1})

Generator ii, with minimal polynomial x2+1 x^{2} + 1 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([1, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
 

Weierstrass equation

y2+(i+1)xy=x3+x2+(16i12)x22i4{y}^2+\left(i+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-16i-12\right){x}-22i-4
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([1,0]),K([0,0]),K([-12,-16]),K([-4,-22])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([1,0]),Polrev([0,0]),Polrev([-12,-16]),Polrev([-4,-22])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![1,0],K![0,0],K![-12,-16],K![-4,-22]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(4i7:15i+25:1)\left(4 i - 7 : 15 i + 25 : 1\right)0.561055090734663308290935028034926209490.56105509073466330829093502803492620949\infty
(2i4:3i+1:1)\left(-2 i - 4 : 3 i + 1 : 1\right)0022
(12i1:34i+14:1)\left(-\frac{1}{2} i - 1 : \frac{3}{4} i + \frac{1}{4} : 1\right)0022

Invariants

Conductor: N\frak{N} = (60i120)(-60i-120) = (i+1)4(i2)2(2i+1)(3)(i+1)^{4}\cdot(-i-2)^{2}\cdot(2i+1)\cdot(3)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 18000 18000 = 2452592^{4}\cdot5^{2}\cdot5\cdot9
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 158400i421200158400i-421200
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (158400i421200)(158400i-421200) = (i+1)8(i2)8(2i+1)2(3)2(i+1)^{8}\cdot(-i-2)^{8}\cdot(2i+1)^{2}\cdot(3)^{2}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 202500000000 202500000000 = 285852922^{8}\cdot5^{8}\cdot5^{2}\cdot9^{2}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 470596225 \frac{470596}{225}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.56105509073466330829093502803492620949 0.56105509073466330829093502803492620949
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.12211018146932661658187005606985241898 1.12211018146932661658187005606985241898
Global period: Ω(E/K)\Omega(E/K) 3.1140259784385669952365615480237270560 3.1140259784385669952365615480237270560
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 32 32  =  222222\cdot2^{2}\cdot2\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 44
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 3.4942802557658977848141442989112341274 3.4942802557658977848141442989112341274
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

3.494280256L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/213.1140261.12211032422.0000003.494280256\begin{aligned}3.494280256 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 3.114026 \cdot 1.122110 \cdot 32 } { {4^2 \cdot 2.000000} } \\ & \approx 3.494280256 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(i+1)(i+1) 22 22 I0I_0^{*} Additive 1-1 44 88 00
(i2)(-i-2) 55 44 I2I_{2}^{*} Additive 11 22 88 22
(2i+1)(2i+1) 55 22 I2I_{2} Split multiplicative 1-1 11 22 22
(3)(3) 99 22 I2I_{2} Non-split multiplicative 11 11 22 22

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 18000.2-g consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.