Base field \(\Q(\sqrt{-1}) \)
Generator \(i\), with minimal polynomial \( x^{2} + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{6}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-i - 1 : -6 i + 4 : 1\right)$ | $0.36567856111581143018124468650659275262$ | $\infty$ |
$\left(2 i : i + 3 : 1\right)$ | $0$ | $6$ |
Invariants
Conductor: | $\frak{N}$ | = | \((110)\) | = | \((i+1)^{2}\cdot(-i-2)\cdot(2i+1)\cdot(11)\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 12100 \) | = | \(2^{2}\cdot5\cdot5\cdot121\) |
| |||||
Discriminant: | $\Delta$ | = | $-687500$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-687500)\) | = | \((i+1)^{4}\cdot(-i-2)^{6}\cdot(2i+1)^{6}\cdot(11)\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 472656250000 \) | = | \(2^{4}\cdot5^{6}\cdot5^{6}\cdot121\) |
| |||||
j-invariant: | $j$ | = | \( \frac{436334416}{171875} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 0.36567856111581143018124468650659275262 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 0.731357122231622860362489373013185505240 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 2.8748660382638667236612673739284042792 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 108 \) = \(3\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot1\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(6\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.1538306288191322078251926635537964398 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.153830629 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 2.874866 \cdot 0.731357 \cdot 108 } { {6^2 \cdot 2.000000} } \\ & \approx 3.153830629 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((i+1)\) | \(2\) | \(3\) | \(IV\) | Additive | \(-1\) | \(2\) | \(4\) | \(0\) |
\((-i-2)\) | \(5\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
\((2i+1)\) | \(5\) | \(6\) | \(I_{6}\) | Split multiplicative | \(-1\) | \(1\) | \(6\) | \(6\) |
\((11)\) | \(121\) | \(1\) | \(I_{1}\) | Split multiplicative | \(-1\) | \(1\) | \(1\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
\(3\) | 3B.1.1 |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 3 and 6.
Its isogeny class
12100.2-a
consists of curves linked by isogenies of
degrees dividing 6.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 220.a3 |
\(\Q\) | 880.j3 |