Learn more

Refine search


Results (3 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
10816.2-a1 10816.2-a \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.235482478$ $6.475162751$ 3.049574742 \( -\frac{8}{13} \) \( \bigl[i + 1\) , \( 0\) , \( i + 1\) , \( -i\) , \( 0\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}$
10816.2-b1 10816.2-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.650069237$ 2.650069237 \( -\frac{335147200}{371293} a + \frac{809589576}{371293} \) \( \bigl[i + 1\) , \( -i - 1\) , \( i + 1\) , \( 6 i + 3\) , \( -4 i + 5\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(6i+3\right){x}-4i+5$
10816.2-b2 10816.2-b \(\Q(\sqrt{-1}) \) \( 2^{6} \cdot 13^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.650069237$ 2.650069237 \( \frac{335147200}{371293} a + \frac{809589576}{371293} \) \( \bigl[i + 1\) , \( -1\) , \( i + 1\) , \( -8 i + 3\) , \( 3 i + 5\bigr] \) ${y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-8i+3\right){x}+3i+5$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.