Learn more

Refine search


Results (3 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
10816.2-a1 10816.2-a Q(1)\Q(\sqrt{-1}) 26132 2^{6} \cdot 13^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.2354824780.235482478 6.4751627516.475162751 3.049574742 813 -\frac{8}{13} [i+1 \bigl[i + 1 , 0 0 , i+1 i + 1 , i -i , 0] 0\bigr] y2+(i+1)xy+(i+1)y=x3ix{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-i{x}
10816.2-b1 10816.2-b Q(1)\Q(\sqrt{-1}) 26132 2^{6} \cdot 13^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 2.6500692372.650069237 2.650069237 335147200371293a+809589576371293 -\frac{335147200}{371293} a + \frac{809589576}{371293} [i+1 \bigl[i + 1 , i1 -i - 1 , i+1 i + 1 , 6i+3 6 i + 3 , 4i+5] -4 i + 5\bigr] y2+(i+1)xy+(i+1)y=x3+(i1)x2+(6i+3)x4i+5{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}+\left(-i-1\right){x}^{2}+\left(6i+3\right){x}-4i+5
10816.2-b2 10816.2-b Q(1)\Q(\sqrt{-1}) 26132 2^{6} \cdot 13^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 2.6500692372.650069237 2.650069237 335147200371293a+809589576371293 \frac{335147200}{371293} a + \frac{809589576}{371293} [i+1 \bigl[i + 1 , 1 -1 , i+1 i + 1 , 8i+3 -8 i + 3 , 3i+5] 3 i + 5\bigr] y2+(i+1)xy+(i+1)y=x3x2+(8i+3)x+3i+5{y}^2+\left(i+1\right){x}{y}+\left(i+1\right){y}={x}^{3}-{x}^{2}+\left(-8i+3\right){x}+3i+5
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.