Generator i, with minimal polynomial
x2+1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, 1]))
gp:K = nfinit(Polrev([1, 0, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 1]);
y2+(i+1)xy+(i+1)y=x3+(−i−1)x2+(45i−16)x+112i+48
sage:E = EllipticCurve([K([1,1]),K([-1,-1]),K([1,1]),K([-16,45]),K([48,112])])
gp:E = ellinit([Polrev([1,1]),Polrev([-1,-1]),Polrev([1,1]),Polrev([-16,45]),Polrev([48,112])], K);
magma:E := EllipticCurve([K![1,1],K![-1,-1],K![1,1],K![-16,45],K![48,112]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z/4Z
Conductor: |
N |
= |
(20i+100) |
= |
(i+1)5⋅(−i−2)⋅(2i+1)⋅(−3i−2) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
10400 |
= |
25⋅5⋅5⋅13 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−200i−3600 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−200i−3600) |
= |
(i+1)6⋅(−i−2)2⋅(2i+1)4⋅(−3i−2) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
13000000 |
= |
26⋅52⋅54⋅13 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
−812516041806568i+812523413439024 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
0
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
0 |
Regulator:
|
Reg(E/K) |
= |
1
|
Néron-Tate Regulator:
|
RegNT(E/K) |
= |
1
|
Global period: |
Ω(E/K) | ≈ |
3.9251777348613368420497684162313911070 |
Tamagawa product: |
∏pcp | = |
16
= 2⋅2⋅22⋅1
|
Torsion order: |
#E(K)tor | = |
4 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 1.9625888674306684210248842081156955535 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
1.962588867≈L(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈42⋅2.0000001⋅3.925178⋅1⋅16≈1.962588867
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2 and 4.
Its isogeny class
10400.3-b
consists of curves linked by isogenies of
degrees dividing 4.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.