Learn more about

Refine search

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.


Results (36 matches)

  Download to        
Label Base field Conductor Isogeny class Weierstrass coefficients
99372.4-a1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-a \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -3006 a + 1195\) , \( 47825 a - 52288\bigr] \)
99372.4-a2 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-a \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -166 a + 95\) , \( 1149 a - 852\bigr] \)
99372.4-b1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-b \( \bigl[1\) , \( -a\) , \( 0\) , \( 63237 a - 37217\) , \( -4634337 a - 606780\bigr] \)
99372.4-b2 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-b \( \bigl[1\) , \( -a\) , \( 0\) , \( 90957 a - 145807\) , \( 17081443 a - 18174670\bigr] \)
99372.4-b3 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-b \( \bigl[1\) , \( -a\) , \( 0\) , \( 6057 a + 95768\) , \( -13993919 a + 8365475\bigr] \)
99372.4-b4 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-b \( \bigl[1\) , \( -a\) , \( 0\) , \( 1297 a - 1777\) , \( 19787 a - 27700\bigr] \)
99372.4-b5 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-b \( \bigl[1\) , \( -a\) , \( 0\) , \( -9303 a + 16408\) , \( 163905 a + 552867\bigr] \)
99372.4-b6 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-b \( \bigl[1\) , \( -a\) , \( 0\) , \( -813 a + 278\) , \( -3845 a + 1907\bigr] \)
99372.4-b7 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-b \( \bigl[1\) , \( -a\) , \( 0\) , \( 12417 a - 7417\) , \( -405173 a - 62380\bigr] \)
99372.4-b8 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-b \( \bigl[1\) , \( -a\) , \( 0\) , \( -443 a + 218\) , \( 2393 a - 3325\bigr] \)
99372.4-b9 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-b \( \bigl[1\) , \( -a\) , \( 0\) , \( 90897 a - 146117\) , \( 17060979 a - 18066672\bigr] \)
99372.4-b10 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-b \( \bigl[1\) , \( -a\) , \( 0\) , \( 1011867 a - 595507\) , \( -296390015 a - 39685318\bigr] \)
99372.4-c1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-c \( \bigl[1\) , \( 1\) , \( 1\) , \( -236 a + 270\) , \( -320 a - 1485\bigr] \)
99372.4-d1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-d \( \bigl[a\) , \( 1\) , \( a + 1\) , \( -294 a - 3316\) , \( -10400 a - 74101\bigr] \)
99372.4-d2 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-d \( \bigl[a\) , \( 1\) , \( a + 1\) , \( -2074 a + 444\) , \( 35156 a - 27445\bigr] \)
99372.4-d3 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-d \( \bigl[a\) , \( 1\) , \( a + 1\) , \( 76 a + 4\) , \( -18 a - 237\bigr] \)
99372.4-d4 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-d \( \bigl[a\) , \( 1\) , \( a + 1\) , \( -64 a - 156\) , \( 314 a - 1789\bigr] \)
99372.4-e1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-e \( \bigl[a + 1\) , \( -a + 1\) , \( a\) , \( 547 a - 685\) , \( -1414 a + 3775\bigr] \)
99372.4-e2 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-e \( \bigl[a + 1\) , \( -a + 1\) , \( a\) , \( -2613 a + 2705\) , \( -16294 a + 33365\bigr] \)
99372.4-f1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-f \( \bigl[a\) , \( 1\) , \( a + 1\) , \( -1842 a - 108\) , \( 36018 a - 15837\bigr] \)
99372.4-f2 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-f \( \bigl[a\) , \( 1\) , \( a + 1\) , \( -122 a - 18\) , \( 410 a - 279\bigr] \)
99372.4-g1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-g \( \bigl[1\) , \( a + 1\) , \( 1\) , \( -31 a + 60\) , \( 243 a + 152\bigr] \)
99372.4-g2 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-g \( \bigl[1\) , \( a + 1\) , \( 1\) , \( 3089 a - 5790\) , \( 40575 a + 15536\bigr] \)
99372.4-g3 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-g \( \bigl[1\) , \( a + 1\) , \( 1\) , \( -831 a + 1560\) , \( 5099 a + 3384\bigr] \)
99372.4-g4 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-g \( \bigl[1\) , \( a + 1\) , \( 1\) , \( -7311 a + 13710\) , \( -380137 a - 170928\bigr] \)
99372.4-g5 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-g \( \bigl[1\) , \( a + 1\) , \( 1\) , \( -671 a + 1260\) , \( 10579 a + 5784\bigr] \)
99372.4-g6 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-g \( \bigl[1\) , \( a + 1\) , \( 1\) , \( -10751 a + 20160\) , \( 681403 a + 334392\bigr] \)
99372.4-h1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-h \( \bigl[a\) , \( -a - 1\) , \( a + 1\) , \( 14 a + 9\) , \( 12 a - 42\bigr] \)
99372.4-i1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-i \( \bigl[a + 1\) , \( -a\) , \( a\) , \( -299 a + 778\) , \( -8127 a + 215\bigr] \)
99372.4-i2 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-i \( \bigl[a + 1\) , \( -a\) , \( a\) , \( 2481 a - 632\) , \( -18607 a - 43679\bigr] \)
99372.4-j1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-j \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 12019 a + 16360\) , \( 1355219 a - 1594281\bigr] \)
99372.4-j2 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-j \( \bigl[a\) , \( -a - 1\) , \( a\) , \( 699 a + 1250\) , \( 12973 a - 21477\bigr] \)
99372.4-k1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-k \( \bigl[a\) , \( a + 1\) , \( a\) , \( 55 a - 38\) , \( -57 a + 37\bigr] \)
99372.4-k2 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-k \( \bigl[a\) , \( a + 1\) , \( a\) , \( -235 a + 132\) , \( -757 a + 667\bigr] \)
99372.4-l1 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-l \( \bigl[1\) , \( -a - 1\) , \( a\) , \( -18 a + 210\) , \( 1204 a - 561\bigr] \)
99372.4-l2 \(\Q(\sqrt{-3}) \) 99372.4 99372.4-l \( \bigl[1\) , \( -a - 1\) , \( a\) , \( 2 a + 10\) , \( 20 a - 5\bigr] \)
  Download to