Properties

Label 2.0.3.1-86700.1-g2
Base field Q(3)\Q(\sqrt{-3})
Conductor norm 86700 86700
CM no
Base change yes
Q-curve yes
Torsion order 6 6
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(3)\Q(\sqrt{-3})

Generator aa, with minimal polynomial x2x+1 x^{2} - x + 1 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([1, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

y2+(a+1)xy=x3ax2+(25a25)x375{y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(25a-25\right){x}-375
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([0,-1]),K([0,0]),K([-25,25]),K([-375,0])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([0,0]),Polrev([-25,25]),Polrev([-375,0])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![0,-1],K![0,0],K![-25,25],K![-375,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/6Z\Z \oplus \Z/{6}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(2a:22a11:1)\left(2 a : 22 a - 11 : 1\right)0.608349030625646888533762607452468991600.60834903062564688853376260745246899160\infty
(40a:40a+235:1)\left(-40 a : 40 a + 235 : 1\right)0066

Invariants

Conductor: N\frak{N} = (340a+170)(-340a+170) = (2a+1)(2)(5)(17)(-2a+1)\cdot(2)\cdot(5)\cdot(17)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 86700 86700 = 34252893\cdot4\cdot25\cdot289
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 62424000-62424000
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (62424000)(-62424000) = (2a+1)6(2)6(5)3(17)2(-2a+1)^{6}\cdot(2)^{6}\cdot(5)^{3}\cdot(17)^{2}
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 3896755776000000 3896755776000000 = 364625328923^{6}\cdot4^{6}\cdot25^{3}\cdot289^{2}
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 172368359962424000 \frac{1723683599}{62424000}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.60834903062564688853376260745246899160 0.60834903062564688853376260745246899160
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.21669806125129377706752521490493798320 1.21669806125129377706752521490493798320
Global period: Ω(E/K)\Omega(E/K) 1.40740452488398312870526605720065948450 1.40740452488398312870526605720065948450
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 216 216  =  (23)(23)32( 2 \cdot 3 )\cdot( 2 \cdot 3 )\cdot3\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 66
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 5.9318803444091643748060409033807391042 5.9318803444091643748060409033807391042
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

5.931880344L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/211.4074051.216698216621.7320515.931880344\begin{aligned}5.931880344 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 1.407405 \cdot 1.216698 \cdot 216 } { {6^2 \cdot 1.732051} } \\ & \approx 5.931880344 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2a+1)(-2a+1) 33 66 I6I_{6} Split multiplicative 1-1 11 66 66
(2)(2) 44 66 I6I_{6} Split multiplicative 1-1 11 66 66
(5)(5) 2525 33 I3I_{3} Split multiplicative 1-1 11 33 33
(17)(17) 289289 22 I2I_{2} Split multiplicative 1-1 11 22 22

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B
33 3B.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 86700.1-g consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 510.g4
Q\Q 1530.c4