Generator a, with minimal polynomial
x2−x+1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp:K = nfinit(Polrev([1, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
y2+(a+1)xy=x3−ax2+(25a−25)x−375
sage:E = EllipticCurve([K([1,1]),K([0,-1]),K([0,0]),K([-25,25]),K([-375,0])])
gp:E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([0,0]),Polrev([-25,25]),Polrev([-375,0])], K);
magma:E := EllipticCurve([K![1,1],K![0,-1],K![0,0],K![-25,25],K![-375,0]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z⊕Z/6Z
P | h^(P) | Order |
(2a:22a−11:1) | 0.60834903062564688853376260745246899160 | ∞ |
(−40a:40a+235:1) | 0 | 6 |
Conductor: |
N |
= |
(−340a+170) |
= |
(−2a+1)⋅(2)⋅(5)⋅(17) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
86700 |
= |
3⋅4⋅25⋅289 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−62424000 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−62424000) |
= |
(−2a+1)6⋅(2)6⋅(5)3⋅(17)2 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
3896755776000000 |
= |
36⋅46⋅253⋅2892 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
624240001723683599 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
0.60834903062564688853376260745246899160
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
1.21669806125129377706752521490493798320
|
Global period: |
Ω(E/K) | ≈ |
1.40740452488398312870526605720065948450 |
Tamagawa product: |
∏pcp | = |
216
= (2⋅3)⋅(2⋅3)⋅3⋅2
|
Torsion order: |
#E(K)tor | = |
6 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 5.9318803444091643748060409033807391042 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
5.931880344≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈62⋅1.7320511⋅1.407405⋅1.216698⋅216≈5.931880344
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is semistable.
There
are 4 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2, 3 and 6.
Its isogeny class
86700.1-g
consists of curves linked by isogenies of
degrees dividing 6.