Properties

Label 2.0.3.1-86436.3-j2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 86436 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([1, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(64a-65\right){x}-13597\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([0,0]),K([1,0]),K([-65,64]),K([-13597,0])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([0,0]),Polrev([1,0]),Polrev([-65,64]),Polrev([-13597,0])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![0,0],K![1,0],K![-65,64],K![-13597,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{3}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(3 a + 24 : -75 a - 47 : 1\right)$$0.54868622661760549273138168786156244394$$\infty$
$\left(-37 a : 37 a - 215 : 1\right)$$0$$3$

Invariants

Conductor: $\frak{N}$ = \((294)\) = \((-2a+1)^{2}\cdot(2)\cdot(-3a+1)^{2}\cdot(3a-2)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 86436 \) = \(3^{2}\cdot4\cdot7^{2}\cdot7^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-79692609024$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-79692609024)\) = \((-2a+1)^{6}\cdot(2)^{9}\cdot(-3a+1)^{8}\cdot(3a-2)^{8}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 6350911933052126232576 \) = \(3^{6}\cdot4^{9}\cdot7^{8}\cdot7^{8}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{189}{512} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.54868622661760549273138168786156244394 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 1.09737245323521098546276337572312488788 \)
Global period: $\Omega(E/K)$ \( 0.428132987663470846653470924328672993320 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 162 \)  =  \(2\cdot3^{2}\cdot3\cdot3\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(3\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 4.8825266607319223224674688225359226736 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}4.882526661 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.428133 \cdot 1.097372 \cdot 162 } { {3^2 \cdot 1.732051} } \\ & \approx 4.882526661 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-2a+1)\) \(3\) \(2\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((2)\) \(4\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)
\((-3a+1)\) \(7\) \(3\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)
\((3a-2)\) \(7\) \(3\) \(IV^{*}\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 86436.3-j consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 882.a2
\(\Q\) 882.j2