Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 150000 over imaginary quadratic fields with absolute discriminant 3

Note: The completeness Only modular elliptic curves are included

Refine search


Results (20 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
86436.3-a1 86436.3-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $9.010310084$ $0.089269199$ 3.715101942 \( -\frac{16591834777}{98304} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( 17076 a - 6404\) , \( 444105 a + 377489\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(17076a-6404\right){x}+444105a+377489$
86436.3-a2 86436.3-a \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $3.003436694$ $0.267807597$ 3.715101942 \( \frac{596183}{864} \) \( \bigl[1\) , \( -a + 1\) , \( 1\) , \( -564 a + 211\) , \( 3105 a + 2639\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-564a+211\right){x}+3105a+2639$
86436.3-b1 86436.3-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.350611629$ 1.619405748 \( \frac{4913}{1296} \) \( \bigl[a\) , \( a\) , \( 1\) , \( 37 a - 60\) , \( -1935 a - 1645\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(37a-60\right){x}-1935a-1645$
86436.3-b2 86436.3-b \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.175305814$ 1.619405748 \( \frac{838561807}{26244} \) \( \bigl[a\) , \( a\) , \( 1\) , \( -2063 a + 3300\) , \( -35535 a - 30205\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-2063a+3300\right){x}-35535a-30205$
86436.3-c1 86436.3-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.586594667$ $0.166757545$ 3.666081354 \( -\frac{6329617441}{279936} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -3384 a + 2115\) , \( 39420 a - 72927\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-3384a+2115\right){x}+39420a-72927$
86436.3-c2 86436.3-c \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.226656381$ $1.167302817$ 3.666081354 \( -\frac{2401}{6} \) \( \bigl[1\) , \( a\) , \( 0\) , \( -24 a + 15\) , \( -60 a + 111\bigr] \) ${y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-24a+15\right){x}-60a+111$
86436.3-d1 86436.3-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.586594667$ $0.166757545$ 3.666081354 \( -\frac{6329617441}{279936} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -1269 a - 2115\) , \( -39420 a - 33507\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-1269a-2115\right){x}-39420a-33507$
86436.3-d2 86436.3-d \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.226656381$ $1.167302817$ 3.666081354 \( -\frac{2401}{6} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -9 a - 15\) , \( 60 a + 51\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-9a-15\right){x}+60a+51$
86436.3-e1 86436.3-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $9.010310084$ $0.089269199$ 3.715101942 \( -\frac{16591834777}{98304} \) \( \bigl[1\) , \( a\) , \( 1\) , \( -17076 a + 10672\) , \( -444105 a + 821594\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-17076a+10672\right){x}-444105a+821594$
86436.3-e2 86436.3-e \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $3.003436694$ $0.267807597$ 3.715101942 \( \frac{596183}{864} \) \( \bigl[1\) , \( a\) , \( 1\) , \( 564 a - 353\) , \( -3105 a + 5744\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(564a-353\right){x}-3105a+5744$
86436.3-f1 86436.3-f \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.350611629$ 1.619405748 \( \frac{4913}{1296} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( -23 a + 60\) , \( 1935 a - 3580\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-23a+60\right){x}+1935a-3580$
86436.3-f2 86436.3-f \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.175305814$ 1.619405748 \( \frac{838561807}{26244} \) \( \bigl[a\) , \( -1\) , \( 1\) , \( 1237 a - 3300\) , \( 35535 a - 65740\bigr] \) ${y}^2+a{x}{y}+{y}={x}^{3}-{x}^{2}+\left(1237a-3300\right){x}+35535a-65740$
86436.3-g1 86436.3-g \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.662245288$ $0.374739182$ 4.584978817 \( -\frac{28037148049}{2117682} a - \frac{17902793141}{2117682} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( 377 a + 275\) , \( 4394 a - 6257\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(377a+275\right){x}+4394a-6257$
86436.3-g2 86436.3-g \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.331122644$ $0.749478365$ 4.584978817 \( -\frac{2016793}{4116} a - \frac{38862}{343} \) \( \bigl[a + 1\) , \( a + 1\) , \( a\) , \( -43 a + 65\) , \( -58 a - 251\bigr] \) ${y}^2+\left(a+1\right){x}{y}+a{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-43a+65\right){x}-58a-251$
86436.3-h1 86436.3-h \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.213735627$ $1.498465456$ 4.437866884 \( -\frac{67645179}{8} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( -93\) , \( -323\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}-93{x}-323$
86436.3-h2 86436.3-h \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.071245209$ $1.498465456$ 4.437866884 \( \frac{189}{512} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 1\) , \( 39\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+{x}+39$
86436.3-i1 86436.3-i \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.662245288$ $0.374739182$ 4.584978817 \( \frac{28037148049}{2117682} a - \frac{2552218955}{117649} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( 650 a - 275\) , \( -3743 a - 2138\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(650a-275\right){x}-3743a-2138$
86436.3-i2 86436.3-i \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.331122644$ $0.749478365$ 4.584978817 \( \frac{2016793}{4116} a - \frac{2483137}{4116} \) \( \bigl[1\) , \( -a + 1\) , \( a\) , \( 20 a - 65\) , \( 79 a - 374\bigr] \) ${y}^2+{x}{y}+a{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(20a-65\right){x}+79a-374$
86436.3-j1 86436.3-j \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $1.646058679$ $0.214066493$ 4.882526660 \( -\frac{67645179}{8} \) \( \bigl[a + 1\) , \( 0\) , \( 0\) , \( -4566 a + 4566\) , \( 119916\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-4566a+4566\right){x}+119916$
86436.3-j2 86436.3-j \(\Q(\sqrt{-3}) \) \( 2^{2} \cdot 3^{2} \cdot 7^{4} \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.548686226$ $0.214066493$ 4.882526660 \( \frac{189}{512} \) \( \bigl[a + 1\) , \( 0\) , \( 1\) , \( 64 a - 65\) , \( -13597\bigr] \) ${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}+\left(64a-65\right){x}-13597$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.