Properties

Label 2.0.3.1-74529.3-b5
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 74529 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([1, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+{y}={x}^{3}+a{x}^{2}+\left(-10456a+8494\right){x}+54188a+219185\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,1]),K([0,1]),K([1,0]),K([8494,-10456]),K([219185,54188])])
 
Copy content gp:E = ellinit([Polrev([0,1]),Polrev([0,1]),Polrev([1,0]),Polrev([8494,-10456]),Polrev([219185,54188])], K);
 
Copy content magma:E := EllipticCurve([K![0,1],K![0,1],K![1,0],K![8494,-10456],K![219185,54188]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{34641}{1444} a + \frac{146253}{1444} : \frac{4310395}{6859} a - \frac{81228285}{54872} : 1\right)$$6.2007877639778075145698148472999494264$$\infty$
$\left(-75 a - 19 : 47 a - 38 : 1\right)$$0$$2$
$\left(-31 a + 13 : 9 a - 16 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((297a-57)\) = \((-2a+1)^{2}\cdot(-3a+1)^{2}\cdot(4a-3)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 74529 \) = \(3^{2}\cdot7^{2}\cdot13^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-44792940860361a+47113994774880$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-44792940860361a+47113994774880)\) = \((-2a+1)^{8}\cdot(-3a+1)^{12}\cdot(4a-3)^{12}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 2115761672920660979069533041 \) = \(3^{8}\cdot7^{12}\cdot13^{12}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{1915717851108899}{1703607756123} a + \frac{2297367303009589}{1703607756123} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 6.2007877639778075145698148472999494264 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 12.401575527955615029139629694599898853 \)
Global period: $\Omega(E/K)$ \( 0.1431735989906350290127031730394283626560 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 64 \)  =  \(2^{2}\cdot2^{2}\cdot2^{2}\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 4.1005222103936045259204964682604068643 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}4.100522210 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.143174 \cdot 12.401576 \cdot 64 } { {4^2 \cdot 1.732051} } \\ & \approx 4.100522210 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-2a+1)\) \(3\) \(4\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)
\((-3a+1)\) \(7\) \(4\) \(I_{6}^{*}\) Additive \(-1\) \(2\) \(12\) \(6\)
\((4a-3)\) \(13\) \(4\) \(I_{6}^{*}\) Additive \(1\) \(2\) \(12\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 74529.3-b consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.