Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-4 a - 17 : 102 a - 66 : 1\right)$ | $2.2978660735033806824221611838866131212$ | $\infty$ |
$\left(-9 : -42 a + 10 : 1\right)$ | $0$ | $4$ |
Invariants
Conductor: | $\frak{N}$ | = | \((-296a+208)\) | = | \((-2a+1)\cdot(2)^{3}\cdot(-5a+3)^{2}\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 69312 \) | = | \(3\cdot4^{3}\cdot19^{2}\) |
| |||||
Discriminant: | $\Delta$ | = | $33093888a+11026176$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((33093888a+11026176)\) | = | \((-2a+1)^{3}\cdot(2)^{8}\cdot(-5a+3)^{7}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 1581681013751808 \) | = | \(3^{3}\cdot4^{8}\cdot19^{7}\) |
| |||||
j-invariant: | $j$ | = | \( \frac{271888}{171} a + \frac{615616}{171} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 1 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(1\) |
Regulator: | $\mathrm{Reg}(E/K)$ | ≈ | \( 2.2978660735033806824221611838866131212 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | ≈ | \( 4.5957321470067613648443223677732262424 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 1.41680811495891414782804836627147671032 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 16 \) = \(1\cdot2^{2}\cdot2^{2}\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(4\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 3.7592838337092508147447805748593916025 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}3.759283834 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 1.416808 \cdot 4.595732 \cdot 16 } { {4^2 \cdot 1.732051} } \\ & \approx 3.759283834 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-2a+1)\) | \(3\) | \(1\) | \(I_{3}\) | Non-split multiplicative | \(1\) | \(1\) | \(3\) | \(3\) |
\((2)\) | \(4\) | \(4\) | \(I_{1}^{*}\) | Additive | \(-1\) | \(3\) | \(8\) | \(0\) |
\((-5a+3)\) | \(19\) | \(4\) | \(I_{1}^{*}\) | Additive | \(-1\) | \(2\) | \(7\) | \(1\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class
69312.1-f
consists of curves linked by isogenies of
degrees dividing 4.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.