Properties

Label 2.0.3.1-63504.1-CMd1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 63504 \)
CM yes (\(-3\))
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([1, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2={x}^{3}-633a+708\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([0,0]),K([0,0]),K([0,0]),K([708,-633])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([0,0]),Polrev([0,0]),Polrev([0,0]),Polrev([708,-633])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![0,0],K![0,0],K![0,0],K![708,-633]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

Not computed ($ 0 \le r \le 2 $)

Invariants

Conductor: $\frak{N}$ = \((108a-288)\) = \((-2a+1)^{4}\cdot(2)^{2}\cdot(-3a+1)^{2}\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 63504 \) = \(3^{4}\cdot4^{2}\cdot7^{2}\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $214116048a-43448400$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((214116048a-43448400)\) = \((-2a+1)^{12}\cdot(2)^{4}\cdot(-3a+1)^{10}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 38430445773775104 \) = \(3^{12}\cdot4^{4}\cdot7^{10}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( 0 \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z[(1+\sqrt{-3})/2]\)    (complex multiplication)
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z[(1+\sqrt{-3})/2]\)   
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{U}(1)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r?$   \(0 \le r \le 2\)
Regulator*: $\mathrm{Reg}(E/K)$ \( 1 \)
Néron-Tate Regulator*: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 1 \)
Global period: $\Omega(E/K)$ \( 1.16541801928413979318582326857329458264 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)  =  \(1\cdot1\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.6914176286085543196357293430257644702 \)
Analytic order of Ш*: Ш${}_{\mathrm{an}}$= \( 4 \) (rounded)

* Conditional on BSD: assuming rank = analytic rank.

Note: We expect that the nontriviality of Ш explains the discrepancy between the upper bound on the rank and the analytic rank. The application of further descents should suffice to establish the weak BSD conjecture for this curve.

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-2a+1)\) \(3\) \(1\) \(II^{*}\) Additive \(1\) \(4\) \(12\) \(0\)
\((2)\) \(4\) \(1\) \(IV\) Additive \(1\) \(2\) \(4\) \(0\)
\((-3a+1)\) \(7\) \(1\) \(II^{*}\) Additive \(-1\) \(2\) \(10\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7Cs.2.1

For all other primes \(p\), the image is a Borel subgroup if \(p=3\), a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has no rational isogenies other than endomorphisms. Its isogeny class 63504.1-CMd consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.