Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
63504.1-CMg1
63504.1-CMg
$1$
$1$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
63504.1
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \)
\( 2^{16} \cdot 3^{12} \cdot 7^{6} \)
$2.45697$
$(-2a+1), (-3a+1), (2)$
0
$\mathsf{trivial}$
$\textsf{yes}$
$-3$
$\mathrm{U}(1)$
✓
✓
$7$
7Cs.2.1
$1$
\( 1 \)
$1$
$0.702205805$
0.810837422
\( 0 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 240 a - 444\bigr] \)
${y}^2={x}^{3}+240a-444$
63504.1-CMf1
63504.1-CMf
$1$
$1$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
63504.1
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \)
\( 2^{16} \cdot 3^{12} \cdot 7^{2} \)
$2.45697$
$(-2a+1), (-3a+1), (2)$
0
$\mathsf{trivial}$
$\textsf{yes}$
$-3$
$\mathrm{U}(1)$
✓
✓
$7$
7Cs.2.1
$1$
\( 1 \)
$1$
$1.343271382$
1.551076189
\( 0 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -12 a + 60\bigr] \)
${y}^2={x}^{3}-12a+60$
63504.1-CMe1
63504.1-CMe
$1$
$1$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
63504.1
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \)
\( 2^{16} \cdot 3^{6} \cdot 7^{8} \)
$2.45697$
$(-2a+1), (-3a+1), (2)$
0
$\Z/3\Z$
$\textsf{yes}$
$-3$
$\mathrm{U}(1)$
✓
✓
$3$
3B.1.1[2]
$1$
\( 3^{3} \)
$1$
$0.879377541$
3.046253162
\( 0 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -156 a + 220\bigr] \)
${y}^2={x}^{3}-156a+220$
63504.1-CMd1
63504.1-CMd
$1$
$1$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
63504.1
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \)
\( 2^{8} \cdot 3^{12} \cdot 7^{10} \)
$2.45697$
$(-2a+1), (-3a+1), (2)$
$0 \le r \le 2$
$\mathsf{trivial}$
$\textsf{yes}$
$-3$
$\mathrm{U}(1)$
✓
✓
$7$
7Cs.2.1
$4$
\( 1 \)
$1$
$0.582709009$
2.691417628
\( 0 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -633 a + 708\bigr] \)
${y}^2={x}^{3}-633a+708$
63504.1-CMc1
63504.1-CMc
$1$
$1$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
63504.1
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \)
\( 2^{8} \cdot 3^{12} \cdot 7^{2} \)
$2.45697$
$(-2a+1), (-3a+1), (2)$
0
$\mathsf{trivial}$
$\textsf{yes}$
$-3$
$\mathrm{U}(1)$
✓
✓
$7$
7Cs.2.1
$1$
\( 1 \)
$1$
$2.132310406$
2.462179974
\( 0 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -3 a + 15\bigr] \)
${y}^2={x}^{3}-3a+15$
63504.1-CMb1
63504.1-CMb
$1$
$1$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
63504.1
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \)
\( 2^{8} \cdot 3^{6} \cdot 7^{8} \)
$2.45697$
$(-2a+1), (-3a+1), (2)$
0
$\Z/3\Z$
$\textsf{yes}$
$-3$
$\mathrm{U}(1)$
✓
✓
$3$
3B.1.1[2]
$1$
\( 3^{2} \)
$1$
$1.395924834$
1.611875157
\( 0 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -39 a + 55\bigr] \)
${y}^2={x}^{3}-39a+55$
63504.1-CMa1
63504.1-CMa
$1$
$1$
\(\Q(\sqrt{-3}) \)
$2$
$[0, 1]$
63504.1
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \)
\( 2^{8} \cdot 3^{6} \cdot 7^{4} \)
$2.45697$
$(-2a+1), (-3a+1), (2)$
$2$
$\Z/3\Z$
$\textsf{yes}$
$-3$
$\mathrm{U}(1)$
✓
✓
$3$
3B.1.1[2]
$1$
\( 3^{3} \)
$0.126487255$
$2.670308144$
4.680139142
\( 0 \)
\( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 3 a - 8\bigr] \)
${y}^2={x}^{3}+3a-8$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.