Learn more

Refine search


Results (7 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
63504.1-CMg1 63504.1-CMg \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 3^{4} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.702205805$ 0.810837422 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 240 a - 444\bigr] \) ${y}^2={x}^{3}+240a-444$
63504.1-CMf1 63504.1-CMf \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 3^{4} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $1.343271382$ 1.551076189 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -12 a + 60\bigr] \) ${y}^2={x}^{3}-12a+60$
63504.1-CMe1 63504.1-CMe \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $0.879377541$ 3.046253162 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -156 a + 220\bigr] \) ${y}^2={x}^{3}-156a+220$
63504.1-CMd1 63504.1-CMd \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 3^{4} \cdot 7^{2} \) $0 \le r \le 2$ $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $0.582709009$ 2.691417628 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -633 a + 708\bigr] \) ${y}^2={x}^{3}-633a+708$
63504.1-CMc1 63504.1-CMc \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 3^{4} \cdot 7^{2} \) 0 $\mathsf{trivial}$ $-3$ $\mathrm{U}(1)$ $1$ $2.132310406$ 2.462179974 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -3 a + 15\bigr] \) ${y}^2={x}^{3}-3a+15$
63504.1-CMb1 63504.1-CMb \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 3^{4} \cdot 7^{2} \) 0 $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $1$ $1.395924834$ 1.611875157 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( -39 a + 55\bigr] \) ${y}^2={x}^{3}-39a+55$
63504.1-CMa1 63504.1-CMa \(\Q(\sqrt{-3}) \) \( 2^{4} \cdot 3^{4} \cdot 7^{2} \) $2$ $\Z/3\Z$ $-3$ $\mathrm{U}(1)$ $0.126487255$ $2.670308144$ 4.680139142 \( 0 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 0\) , \( 3 a - 8\bigr] \) ${y}^2={x}^{3}+3a-8$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.