Properties

Label 2.0.3.1-63075.1-a1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 63075 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([1, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}-{x}^{2}+79{x}-1123\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([0,0]),K([-1,0]),K([1,0]),K([79,0]),K([-1123,0])])
 
Copy content gp:E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([1,0]),Polrev([79,0]),Polrev([-1123,0])], K);
 
Copy content magma:E := EllipticCurve([K![0,0],K![-1,0],K![1,0],K![79,0],K![-1123,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-4 : 45 a - 23 : 1\right)$$0.12003476494896236576467112446821754487$$\infty$

Invariants

Conductor: $\frak{N}$ = \((-290a+145)\) = \((-2a+1)\cdot(5)\cdot(29)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 63075 \) = \(3\cdot25\cdot841\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-550546875$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-550546875)\) = \((-2a+1)^{10}\cdot(5)^{7}\cdot(29)\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 303101861572265625 \) = \(3^{10}\cdot25^{7}\cdot841\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{53838872576}{550546875} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.12003476494896236576467112446821754487 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.240069529897924731529342248936435089740 \)
Global period: $\Omega(E/K)$ \( 0.976829287538608030773935600549861193440 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 14 \)  =  \(2\cdot7\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.8954970925518306660577331284133436021 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$$\begin{aligned}1.895497093 \approx L'(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 0.976829 \cdot 0.240070 \cdot 14 } { {1^2 \cdot 1.732051} } \\ & \approx 1.895497093 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There are 3 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-2a+1)\) \(3\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)
\((5)\) \(25\) \(7\) \(I_{7}\) Split multiplicative \(-1\) \(1\) \(7\) \(7\)
\((29)\) \(841\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 63075.1-a consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 435.b1
\(\Q\) 1305.c1