Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 150000 over imaginary quadratic fields with absolute discriminant 3

Note: The completeness Only modular elliptic curves are included

Refine search


Results (11 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
63075.1-a1 63075.1-a \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.120034764$ $0.488414643$ 1.895497092 \( \frac{53838872576}{550546875} \) \( \bigl[0\) , \( -1\) , \( 1\) , \( 79\) , \( -1123\bigr] \) ${y}^2+{y}={x}^{3}-{x}^{2}+79{x}-1123$
63075.1-b1 63075.1-b \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $2.858638960$ 2.200581297 \( -\frac{160989184}{3915} \) \( \bigl[0\) , \( a - 1\) , \( 1\) , \( 11 a\) , \( 11\bigr] \) ${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+11a{x}+11$
63075.1-b2 63075.1-b \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $0.952879653$ 2.200581297 \( \frac{12747309056}{9145875} \) \( \bigl[0\) , \( a - 1\) , \( 1\) , \( -49 a\) , \( 80\bigr] \) ${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}-49a{x}+80$
63075.1-c1 63075.1-c \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.336809138$ 1.555654772 \( -\frac{6561258219361}{3978455625} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -390 a + 390\) , \( -4275\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-390a+390\right){x}-4275$
63075.1-c2 63075.1-c \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.347236552$ 1.555654772 \( \frac{2992209121}{951345} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -30 a + 30\) , \( -45\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-30a+30\right){x}-45$
63075.1-c3 63075.1-c \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.673618276$ 1.555654772 \( \frac{9104453457841}{1703025} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -435 a + 435\) , \( -3528\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-435a+435\right){x}-3528$
63075.1-c4 63075.1-c \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.336809138$ 1.555654772 \( \frac{37286818682653441}{1305} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -6960 a + 6960\) , \( -224073\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-6960a+6960\right){x}-224073$
63075.1-d1 63075.1-d \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.621697705$ 2.871498698 \( \frac{157376536199}{118918125} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 112\) , \( 263\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}+112{x}+263$
63075.1-d2 63075.1-d \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.243395410$ 2.871498698 \( \frac{3803721481}{1703025} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -33\) , \( 31\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-33{x}+31$
63075.1-d3 63075.1-d \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.621697705$ 2.871498698 \( \frac{1888690601881}{31827645} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -258\) , \( -1589\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-258{x}-1589$
63075.1-d4 63075.1-d \(\Q(\sqrt{-3}) \) \( 3 \cdot 5^{2} \cdot 29^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.486790820$ 2.871498698 \( \frac{2305199161}{1305} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -28\) , \( 53\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-28{x}+53$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.