The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 150000 over imaginary quadratic fields with absolute discriminant 3
Note: The completeness Only modular elliptic curves are included
| Label |
Class |
Class size |
Class degree |
Base field |
Field degree |
Field signature |
Conductor |
Conductor norm |
Discriminant norm |
Root analytic conductor |
Bad primes |
Rank |
Torsion |
CM |
CM |
Sato-Tate |
$\Q$-curve |
Base change |
Semistable |
Potentially good |
Nonmax $\ell$ |
mod-$\ell$ images |
$Ш_{\textrm{an}}$ |
Tamagawa |
Regulator |
Period |
Leading coeff |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
| 63075.1-a1 |
63075.1-a |
$1$ |
$1$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{10} \cdot 5^{14} \cdot 29^{2} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
$1$ |
$\mathsf{trivial}$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
|
|
$1$ |
\( 2 \cdot 7 \) |
$0.120034764$ |
$0.488414643$ |
1.895497092 |
\( \frac{53838872576}{550546875} \) |
\( \bigl[0\) , \( -1\) , \( 1\) , \( 79\) , \( -1123\bigr] \) |
${y}^2+{y}={x}^{3}-{x}^{2}+79{x}-1123$ |
| 63075.1-b1 |
63075.1-b |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{6} \cdot 5^{2} \cdot 29^{2} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3B.1.1[2] |
$1$ |
\( 2 \cdot 3 \) |
$1$ |
$2.858638960$ |
2.200581297 |
\( -\frac{160989184}{3915} \) |
\( \bigl[0\) , \( a - 1\) , \( 1\) , \( 11 a\) , \( 11\bigr] \) |
${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}+11a{x}+11$ |
| 63075.1-b2 |
63075.1-b |
$2$ |
$3$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{2} \cdot 5^{6} \cdot 29^{6} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
0 |
$\Z/3\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$3$ |
3B.1.1[2] |
$1$ |
\( 2 \cdot 3^{2} \) |
$1$ |
$0.952879653$ |
2.200581297 |
\( \frac{12747309056}{9145875} \) |
\( \bigl[0\) , \( a - 1\) , \( 1\) , \( -49 a\) , \( 80\bigr] \) |
${y}^2+{y}={x}^{3}+\left(a-1\right){x}^{2}-49a{x}+80$ |
| 63075.1-c1 |
63075.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{4} \cdot 5^{8} \cdot 29^{8} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.336809138$ |
1.555654772 |
\( -\frac{6561258219361}{3978455625} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -390 a + 390\) , \( -4275\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-390a+390\right){x}-4275$ |
| 63075.1-c2 |
63075.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{16} \cdot 5^{2} \cdot 29^{2} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$1.347236552$ |
1.555654772 |
\( \frac{2992209121}{951345} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -30 a + 30\) , \( -45\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-30a+30\right){x}-45$ |
| 63075.1-c3 |
63075.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{8} \cdot 5^{4} \cdot 29^{4} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$0.673618276$ |
1.555654772 |
\( \frac{9104453457841}{1703025} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -435 a + 435\) , \( -3528\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-435a+435\right){x}-3528$ |
| 63075.1-c4 |
63075.1-c |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{4} \cdot 5^{2} \cdot 29^{2} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$4$ |
\( 2^{2} \) |
$1$ |
$0.336809138$ |
1.555654772 |
\( \frac{37286818682653441}{1305} \) |
\( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -6960 a + 6960\) , \( -224073\bigr] \) |
${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-6960a+6960\right){x}-224073$ |
| 63075.1-d1 |
63075.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{16} \cdot 5^{8} \cdot 29^{2} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
0 |
$\Z/4\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{6} \) |
$1$ |
$0.621697705$ |
2.871498698 |
\( \frac{157376536199}{118918125} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( 112\) , \( 263\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}+112{x}+263$ |
| 63075.1-d2 |
63075.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{8} \cdot 5^{4} \cdot 29^{4} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
0 |
$\Z/2\Z\oplus\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2Cs |
$1$ |
\( 2^{5} \) |
$1$ |
$1.243395410$ |
2.871498698 |
\( \frac{3803721481}{1703025} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -33\) , \( 31\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-33{x}+31$ |
| 63075.1-d3 |
63075.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{4} \cdot 5^{2} \cdot 29^{8} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{4} \) |
$1$ |
$0.621697705$ |
2.871498698 |
\( \frac{1888690601881}{31827645} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -258\) , \( -1589\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-258{x}-1589$ |
| 63075.1-d4 |
63075.1-d |
$4$ |
$4$ |
\(\Q(\sqrt{-3}) \) |
$2$ |
$[0, 1]$ |
63075.1 |
\( 3 \cdot 5^{2} \cdot 29^{2} \) |
\( 3^{4} \cdot 5^{2} \cdot 29^{2} \) |
$2.45281$ |
$(-2a+1), (5), (29)$ |
0 |
$\Z/2\Z$ |
$\textsf{no}$ |
|
$\mathrm{SU}(2)$ |
✓ |
✓ |
✓ |
|
$2$ |
2B |
$1$ |
\( 2^{2} \) |
$1$ |
$2.486790820$ |
2.871498698 |
\( \frac{2305199161}{1305} \) |
\( \bigl[1\) , \( 0\) , \( 1\) , \( -28\) , \( 53\bigr] \) |
${y}^2+{x}{y}+{y}={x}^{3}-28{x}+53$ |
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.