Generator a, with minimal polynomial
x2−x+1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp:K = nfinit(Polrev([1, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
y2=x3−x2+(−13179a+36502)x+2179225a+46814
sage:E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([36502,-13179]),K([46814,2179225])])
gp:E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([36502,-13179]),Polrev([46814,2179225])], K);
magma:E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![36502,-13179],K![46814,2179225]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z
P | h^(P) | Order |
(−16919827a+1696819:21972948a−21973246:1) | 2.6573849845160811132831303366818796059 | ∞ |
Conductor: |
N |
= |
(256a−48) |
= |
(2)4⋅(−3a+1)⋅(6a−5) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
55552 |
= |
44⋅7⋅31 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−46137344a−48234496 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−46137344a−48234496) |
= |
(2)21⋅(−3a+1)2⋅(6a−5) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
6680632650366976 |
= |
421⋅72⋅31 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
−38886419926242340409933a+77772818769373204677155 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
2.6573849845160811132831303366818796059
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
5.3147699690321622265662606733637592118
|
Global period: |
Ω(E/K) | ≈ |
0.248523457545471556287579096485715738800 |
Tamagawa product: |
∏pcp | = |
4
= 2⋅2⋅1
|
Torsion order: |
#E(K)tor | = |
1 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 3.0503608854677009156529063071878281616 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
3.050360885≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈12⋅1.7320511⋅0.248523⋅5.314770⋅4≈3.050360885
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 3 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
3 and 9.
Its isogeny class
55552.2-e
consists of curves linked by isogenies of
degrees dividing 9.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.