Properties

Label 2.0.3.1-54684.2-a5
Base field Q(3)\Q(\sqrt{-3})
Conductor norm 54684 54684
CM no
Base change no
Q-curve no
Torsion order 1 1
Rank 0 0

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field Q(3)\Q(\sqrt{-3})

Generator aa, with minimal polynomial x2x+1 x^{2} - x + 1 ; class number 11.

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([1, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

y2+xy=x3+ax2+(32887a+47339)x+1679851a+2156108{y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(-32887a+47339\right){x}+1679851a+2156108
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,0]),K([0,1]),K([0,0]),K([47339,-32887]),K([2156108,1679851])])
 
Copy content gp:E = ellinit([Polrev([1,0]),Polrev([0,1]),Polrev([0,0]),Polrev([47339,-32887]),Polrev([2156108,1679851])], K);
 
Copy content magma:E := EllipticCurve([K![1,0],K![0,1],K![0,0],K![47339,-32887],K![2156108,1679851]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

trivial

Invariants

Conductor: N\frak{N} = (270a+132)(-270a+132) = (2a+1)2(2)(3a+1)2(6a5)(-2a+1)^{2}\cdot(2)\cdot(-3a+1)^{2}\cdot(6a-5)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 54684 54684 = 32472313^{2}\cdot4\cdot7^{2}\cdot31
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: Δ\Delta = 125715456a212184576125715456a-212184576
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (125715456a212184576)(125715456a-212184576) = (2a+1)6(2)9(3a+1)8(6a5)(-2a+1)^{6}\cdot(2)^{9}\cdot(-3a+1)^{8}\cdot(6a-5)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 34151789441581056 34151789441581056 = 364978313^{6}\cdot4^{9}\cdot7^{8}\cdot31
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: jj = 19926242340409933388864a+18769373204677155777728 -\frac{19926242340409933}{388864} a + \frac{18769373204677155}{777728}
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: rr = 00
Regulator: Reg(E/K)\mathrm{Reg}(E/K) = 1 1
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) = 1 1
Global period: Ω(E/K)\Omega(E/K) 0.216929058318908098458925836395784211340 0.216929058318908098458925836395784211340
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 2 2  =  11211\cdot1\cdot2\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 11
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 2.2543929038785251052712157553570879198 2.2543929038785251052712157553570879198
Analytic order of Ш: Шan{}_{\mathrm{an}}= 9 9 (rounded)

BSD formula

2.254392904L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/290.21692912121.7320512.254392904\begin{aligned}2.254392904 \approx L(E/K,1) & \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 9 \cdot 0.216929 \cdot 1 \cdot 2 } { {1^2 \cdot 1.732051} } \\ & \approx 2.254392904 \end{aligned}

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2a+1)(-2a+1) 33 11 I0I_0^{*} Additive 1-1 22 66 00
(2)(2) 44 11 I9I_{9} Non-split multiplicative 11 11 99 99
(3a+1)(-3a+1) 77 22 I2I_{2}^{*} Additive 1-1 22 88 22
(6a5)(6a-5) 3131 11 I1I_{1} Split multiplicative 1-1 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
33 3B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3 and 9.
Its isogeny class 54684.2-a consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.