Generator a, with minimal polynomial
x2−x+1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp:K = nfinit(Polrev([1, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
y2+xy=x3+ax2+(−32887a+47339)x+1679851a+2156108
sage:E = EllipticCurve([K([1,0]),K([0,1]),K([0,0]),K([47339,-32887]),K([2156108,1679851])])
gp:E = ellinit([Polrev([1,0]),Polrev([0,1]),Polrev([0,0]),Polrev([47339,-32887]),Polrev([2156108,1679851])], K);
magma:E := EllipticCurve([K![1,0],K![0,1],K![0,0],K![47339,-32887],K![2156108,1679851]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
trivial
| Conductor: |
N |
= |
(−270a+132) |
= |
(−2a+1)2⋅(2)⋅(−3a+1)2⋅(6a−5) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
| Conductor norm: |
N(N) |
= |
54684 |
= |
32⋅4⋅72⋅31 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
| Discriminant: |
Δ |
= |
125715456a−212184576 |
|
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(125715456a−212184576) |
= |
(−2a+1)6⋅(2)9⋅(−3a+1)8⋅(6a−5) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
34151789441581056 |
= |
36⋅49⋅78⋅31 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
| j-invariant: |
j |
= |
−38886419926242340409933a+77772818769373204677155 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
| Endomorphism ring: |
End(E) |
= |
Z
|
| Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
| Sato-Tate group: |
ST(E) |
= |
SU(2) |
| Analytic rank: |
ran | = |
0
|
sage:E.rank()
magma:Rank(E);
|
| Mordell-Weil rank: |
r |
= |
0 |
|
Regulator:
|
Reg(E/K) |
= |
1
|
|
Néron-Tate Regulator:
|
RegNT(E/K) |
= |
1
|
| Global period: |
Ω(E/K) | ≈ |
0.216929058318908098458925836395784211340 |
| Tamagawa product: |
∏pcp | = |
2
= 1⋅1⋅2⋅1
|
| Torsion order: |
#E(K)tor | = |
1 |
| Special value: |
L(r)(E/K,1)/r! |
≈ | 2.2543929038785251052712157553570879198 |
|
Analytic order of Ш:
|
Шan | = |
9 (rounded) |
2.254392904≈L(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈12⋅1.7320519⋅0.216929⋅1⋅2≈2.254392904
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
3 and 9.
Its isogeny class
54684.2-a
consists of curves linked by isogenies of
degrees dividing 9.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.