Properties

Label 2.0.3.1-54684.2-a2
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 54684 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([1, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+a{x}^{2}+\left(3053a-4156\right){x}+6565a-58879\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,0]),K([0,1]),K([0,0]),K([-4156,3053]),K([-58879,6565])])
 
Copy content gp:E = ellinit([Polrev([1,0]),Polrev([0,1]),Polrev([0,0]),Polrev([-4156,3053]),Polrev([-58879,6565])], K);
 
Copy content magma:E := EllipticCurve([K![1,0],K![0,1],K![0,0],K![-4156,3053],K![-58879,6565]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

trivial

Invariants

Conductor: $\frak{N}$ = \((-270a+132)\) = \((-2a+1)^{2}\cdot(2)\cdot(-3a+1)^{2}\cdot(6a-5)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 54684 \) = \(3^{2}\cdot4\cdot7^{2}\cdot31\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $-2374286203836a-2430902055150$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((-2374286203836a-2430902055150)\) = \((-2a+1)^{6}\cdot(2)\cdot(-3a+1)^{24}\cdot(6a-5)\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 17318176991877681596192796 \) = \(3^{6}\cdot4\cdot7^{24}\cdot31\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( \frac{20687422086138241443}{50480821535223919} a + \frac{113695097195902805459}{100961643070447838} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 0.216929058318908098458925836395784211340 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)  =  \(1\cdot1\cdot2\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.2543929038785251052712157553570879198 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 9 \) (rounded)

BSD formula

$$\begin{aligned}2.254392904 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 9 \cdot 0.216929 \cdot 1 \cdot 2 } { {1^2 \cdot 1.732051} } \\ & \approx 2.254392904 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-2a+1)\) \(3\) \(1\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((2)\) \(4\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-3a+1)\) \(7\) \(2\) \(I_{18}^{*}\) Additive \(-1\) \(2\) \(24\) \(18\)
\((6a-5)\) \(31\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 54684.2-a consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.