Properties

Label 2.0.3.1-3087.3-a3
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 3087 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(816a-306\right){x}+13020a+11067\)
sage: E = EllipticCurve([K([1,0]),K([1,-1]),K([0,0]),K([-306,816]),K([11067,13020])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,-1]),Polrev([0,0]),Polrev([-306,816]),Polrev([11067,13020])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,-1],K![0,0],K![-306,816],K![11067,13020]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((63a-42)\) = \((-2a+1)^{2}\cdot(-3a+1)\cdot(3a-2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 3087 \) = \(3^{2}\cdot7\cdot7^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-168101597160a+17277108597)\) = \((-2a+1)^{8}\cdot(-3a+1)^{8}\cdot(3a-2)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25652335899752984589489 \) = \(3^{8}\cdot7^{8}\cdot7^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{4354703137}{17294403} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(4 a - 26 : -2 a + 13 : 1\right)$ $\left(28 a - 14 : -14 a + 7 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.18812060880653590283612466190380257938 \)
Tamagawa product: \( 128 \)  =  \(2^{2}\cdot2^{3}\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 1.7377837461531165876073650207609268840 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a+1)\) \(3\) \(4\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)
\((-3a+1)\) \(7\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((3a-2)\) \(7\) \(4\) \(I_{8}^{*}\) Additive \(-1\) \(2\) \(14\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 3087.3-a consists of curves linked by isogenies of degrees dividing 16.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.