Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-29 a - 19 : 0 : 1\right)$ | $0$ | $2$ |
Invariants
Conductor: | $\frak{N}$ | = | \((-72a-120)\) | = | \((-2a+1)^{2}\cdot(2)^{3}\cdot(3a-2)^{2}\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 28224 \) | = | \(3^{2}\cdot4^{3}\cdot7^{2}\) |
| |||||
Discriminant: | $\Delta$ | = | $-111532032a-6607872$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((-111532032a-6607872)\) | = | \((-2a+1)^{7}\cdot(2)^{10}\cdot(3a-2)^{8}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 13220047525773312 \) | = | \(3^{7}\cdot4^{10}\cdot7^{8}\) |
| |||||
j-invariant: | $j$ | = | \( -\frac{7384301576}{147} a + \frac{25339394260}{147} \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z\) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(0\) |
Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 0.464193648306583703404403020974172077100 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 8 \) = \(2\cdot2\cdot2\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(2\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 2.1440186224473645685758013670712946862 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 4 \) (rounded) |
BSD formula
$$\begin{aligned}2.144018622 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 4 \cdot 0.464194 \cdot 1 \cdot 8 } { {2^2 \cdot 1.732051} } \\ & \approx 2.144018622 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-2a+1)\) | \(3\) | \(2\) | \(I_{1}^{*}\) | Additive | \(-1\) | \(2\) | \(7\) | \(1\) |
\((2)\) | \(4\) | \(2\) | \(III^{*}\) | Additive | \(-1\) | \(3\) | \(10\) | \(0\) |
\((3a-2)\) | \(7\) | \(2\) | \(I_{2}^{*}\) | Additive | \(-1\) | \(2\) | \(8\) | \(2\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(2\) | 2B |
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class
28224.3-d
consists of curves linked by isogenies of
degrees dividing 8.
Base change
This elliptic curve is not a \(\Q\)-curve.
It is not the base change of an elliptic curve defined over any subfield.