Properties

Base field \(\Q(\sqrt{-3}) \)
Label 2.0.3.1-144.1-CMa2
Conductor \((12)\)
Conductor norm \( 144 \)
CM yes (\(-12\))
base-change yes: 36.a1,36.a2
Q-curve yes
Torsion order \( 6 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x + 1)
gp (2.8): K = nfinit(a^2 - a + 1);

Weierstrass equation

\( y^2 = x^{3} - 15 x + 22 \)
magma: E := ChangeRing(EllipticCurve([0, 0, 0, -15, 22]),K);
sage: E = EllipticCurve(K, [0, 0, 0, -15, 22])
gp (2.8): E = ellinit([0, 0, 0, -15, 22],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((12)\) = \( \left(2\right)^{2} \cdot \left(-2 a + 1\right)^{2} \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 144 \) = \( 3^{2} \cdot 4^{2} \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((6912)\) = \( \left(2\right)^{8} \cdot \left(-2 a + 1\right)^{6} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 47775744 \) = \( 3^{6} \cdot 4^{8} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( 54000 \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z[\sqrt{-3}]\)   ( Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{U}(1)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/6\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(-1 : -6 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-2 a + 1\right) \) \(3\) \(2\) \(I_{0}^*\) Additive \(-1\) \(2\) \(6\) \(0\)
\( \left(2\right) \) \(4\) \(3\) \(IV^*\) Additive \(1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1[2]

For all other primes \(p\), the image is a Borel subgroup if \(p=2\), a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies (excluding endomorphisms) of degree \(d\) for \(d=\) 2.
Its isogeny class 144.1-CMa consists of curves linked by isogenies of degree2.

Base change

This curve is the base-change of elliptic curves 36.a1, 36.a2, defined over \(\Q\), so it is also a \(\Q\)-curve.