Base field \(\Q(\sqrt{-3}) \)
Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).
Weierstrass equation
This is a global minimal model.
Mordell-Weil group structure
\(\Z/{6}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$\left(-1 : -6 : 1\right)$ | $0$ | $6$ |
Invariants
Conductor: | $\frak{N}$ | = | \((12)\) | = | \((-2a+1)^{2}\cdot(2)^{2}\) |
| |||||
Conductor norm: | $N(\frak{N})$ | = | \( 144 \) | = | \(3^{2}\cdot4^{2}\) |
| |||||
Discriminant: | $\Delta$ | = | $6912$ | ||
Discriminant ideal: | $\frak{D}_{\mathrm{min}} = (\Delta)$ | = | \((6912)\) | = | \((-2a+1)^{6}\cdot(2)^{8}\) |
| |||||
Discriminant norm: | $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ | = | \( 47775744 \) | = | \(3^{6}\cdot4^{8}\) |
| |||||
j-invariant: | $j$ | = | \( 54000 \) | ||
| |||||
Endomorphism ring: | $\mathrm{End}(E)$ | = | \(\Z[\sqrt{-3}]\) (complex multiplication) | ||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[\sqrt{-3}]\) | ||
| |||||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{U}(1)$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | \( 0 \) |
|
|||
Mordell-Weil rank: | $r$ | = | \(0\) |
Regulator: | $\mathrm{Reg}(E/K)$ | = | \( 1 \) |
Néron-Tate Regulator: | $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ | = | \( 1 \) |
Global period: | $\Omega(E/K)$ | ≈ | \( 5.1081157178325565351221945057517738030 \) |
Tamagawa product: | $\prod_{\frak{p}}c_{\frak{p}}$ | = | \( 6 \) = \(2\cdot3\) |
Torsion order: | $\#E(K)_{\mathrm{tor}}$ | = | \(6\) |
Special value: | $L^{(r)}(E/K,1)/r!$ | ≈ | \( 0.49152866412373082678428413186819579864 \) |
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | \( 1 \) (rounded) |
BSD formula
$$\begin{aligned}0.491528664 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 1 \cdot 5.108116 \cdot 1 \cdot 6 } { {6^2 \cdot 1.732051} } \\ & \approx 0.491528664 \end{aligned}$$
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $\frak{p}$ of bad reduction.
$\mathfrak{p}$ | $N(\mathfrak{p})$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) | \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\) |
---|---|---|---|---|---|---|---|---|
\((-2a+1)\) | \(3\) | \(2\) | \(I_0^{*}\) | Additive | \(-1\) | \(2\) | \(6\) | \(0\) |
\((2)\) | \(4\) | \(3\) | \(IV^{*}\) | Additive | \(1\) | \(2\) | \(8\) | \(0\) |
Galois Representations
The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois Representation |
---|---|
\(3\) | 3B.1.1[2] |
For all other primes \(p\), the image is a Borel subgroup if \(p=2\), a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).
Isogenies and isogeny class
This curve has non-trivial cyclic isogenies (excluding endomorphisms) of degree \(d\) for \(d=\)
2.
Its isogeny class
144.1-CMa
consists of curves linked by isogenies of
degree 2.
Base change
This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:
Base field | Curve |
---|---|
\(\Q\) | 36.a1 |
\(\Q\) | 36.a2 |