# Properties

 Label 2.0.3.1-136900.2-c4 Base field $$\Q(\sqrt{-3})$$ Conductor norm $$136900$$ CM no Base change yes Q-curve yes Torsion order $$3$$ Rank $$1$$

# Related objects

Show commands: Magma / PariGP / SageMath

## Base field$$\Q(\sqrt{-3})$$

Generator $$a$$, with minimal polynomial $$x^{2} - x + 1$$; class number $$1$$.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))

gp: K = nfinit(Polrev([1, -1, 1]));

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);

## Weierstrass equation

$${y}^2+\left(a+1\right){x}{y}+{y}={x}^{3}-a{x}^{2}+\left(166a-167\right){x}-9204$$
sage: E = EllipticCurve([K([1,1]),K([0,-1]),K([1,0]),K([-167,166]),K([-9204,0])])

gp: E = ellinit([Polrev([1,1]),Polrev([0,-1]),Polrev([1,0]),Polrev([-167,166]),Polrev([-9204,0])], K);

magma: E := EllipticCurve([K![1,1],K![0,-1],K![1,0],K![-167,166],K![-9204,0]]);

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 Conductor: $$(370)$$ = $$(2)\cdot(5)\cdot(-7a+4)\cdot(-7a+3)$$ sage: E.conductor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor norm: $$136900$$ = $$4\cdot25\cdot37\cdot37$$ sage: E.conductor().norm()  gp: idealnorm(ellglobalred(E)[1])  magma: Norm(Conductor(E)); Discriminant: $$(-37000000000)$$ = $$(2)^{9}\cdot(5)^{9}\cdot(-7a+4)\cdot(-7a+3)$$ sage: E.discriminant()  gp: E.disc  magma: Discriminant(E); Discriminant norm: $$1369000000000000000000$$ = $$4^{9}\cdot25^{9}\cdot37\cdot37$$ sage: E.discriminant().norm()  gp: norm(E.disc)  magma: Norm(Discriminant(E)); j-invariant: $$\frac{510273943271}{37000000000}$$ sage: E.j_invariant()  gp: E.j  magma: jInvariant(E); Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm(), E.cm_discriminant()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$

## Mordell-Weil group

 Rank: $$1$$ Generator $\left(-13 a : 93 a - 47 : 1\right)$ Height $$0.54384049991678506166820349984407920378$$ Torsion structure: $$\Z/3\Z$$ sage: T = E.torsion_subgroup(); T.invariants()  gp: T = elltors(E); T[2]  magma: T,piT := TorsionSubgroup(E); Invariants(T); Torsion generator: $\left(\frac{1}{3} a : -\frac{1003}{9} a + \frac{497}{9} : 1\right)$ sage: T.gens()  gp: T[3]  magma: [piT(P) : P in Generators(T)];

## BSD invariants

 Analytic rank: $$1$$ sage: E.rank()  magma: Rank(E); Mordell-Weil rank: $$1$$ Regulator: $$0.54384049991678506166820349984407920378$$ Period: $$0.24297458868674091268716649578718706271$$ Tamagawa product: $$81$$  =  $$3^{2}\cdot3^{2}\cdot1\cdot1$$ Torsion order: $$3$$ Leading coefficient: $$2.7464663064370514702108270755386052328$$ Analytic order of Ш: $$1$$ (rounded)

## Local data at primes of bad reduction

sage: E.local_data()

magma: LocalInformation(E);

prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$(2)$$ $$4$$ $$9$$ $$I_{9}$$ Split multiplicative $$-1$$ $$1$$ $$9$$ $$9$$
$$(5)$$ $$25$$ $$9$$ $$I_{9}$$ Split multiplicative $$-1$$ $$1$$ $$9$$ $$9$$
$$(-7a+4)$$ $$37$$ $$1$$ $$I_{1}$$ Split multiplicative $$-1$$ $$1$$ $$1$$ $$1$$
$$(-7a+3)$$ $$37$$ $$1$$ $$I_{1}$$ Split multiplicative $$-1$$ $$1$$ $$1$$ $$1$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois Representation
$$3$$ 3B.1.1[2]

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3 and 9.
Its isogeny class 136900.2-c consists of curves linked by isogenies of degrees dividing 9.

## Base change

This elliptic curve is a $$\Q$$-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
$$\Q$$ 370.a3
$$\Q$$ 3330.v3