Properties

Label 2.0.3.1-100009.6-a1
Base field \(\Q(\sqrt{-3}) \)
Conductor norm \( 100009 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-223a-521\right){x}+2995a+4175\)
sage: E = EllipticCurve([K([0,0]),K([1,0]),K([1,1]),K([-521,-223]),K([4175,2995])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,0]),Polrev([1,1]),Polrev([-521,-223]),Polrev([4175,2995])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,0],K![1,1],K![-521,-223],K![4175,2995]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-343a+63)\) = \((-3a+1)\cdot(3a-2)\cdot(-4a+1)\cdot(13a-12)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 100009 \) = \(7\cdot7\cdot13\cdot157\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1007529229a-717104269)\) = \((-3a+1)^{7}\cdot(3a-2)^{5}\cdot(-4a+1)^{5}\cdot(13a-12)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 806850168649180201 \) = \(7^{7}\cdot7^{5}\cdot13^{5}\cdot157\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1575191114742206464}{48006792922543} a + \frac{1822030089292136448}{48006792922543} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-7 a - 28 : -73 a + 75 : 1\right)$
Height \(3.8421865525887063455676942933483109893\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.8421865525887063455676942933483109893 \)
Period: \( 0.36986326834952912662697699596407016972 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.2818521714007113503162923616769453716 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a+1)\) \(7\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)
\((3a-2)\) \(7\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((-4a+1)\) \(13\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((13a-12)\) \(157\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 100009.6-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.